# A recurrent formula inspired by Rowland's formula and based on Smarandache function which might be a criterion for primality 

Marius Coman<br>Bucuresti, Romania<br>email: mariuscoman13@gmail.com


#### Abstract

Studying the two well known recurrent relations with the exceptional property that they generate only values which are equal to 1 or are primes, id est the formula which belongs to Eric Rowland and the one that belongs to Benoit Cloitre, I managed to discover a formula based on Smarandache function, from the same family of recurrent relations, which, instead to give a prime value for any input, seems to give the same value, 2, if and only if the value of the input is a prime. I name this relation the Coman-Smarandache criterion for primality and the exceptions from this rule, if they exist, Coman-Smarandache pseudoprimes.


## Conjecture

Let $f(1)=1$ and $f(n)=S(f(n-1))+\ln [n, S(f(n-1))]$, where $S$ is the Smarandache function and lcm the least common multiple. Then the value of the function $g(n)=f(n) / S(f(n-$ 1)) is equal to 2 if and only if $n$ is an odd prime.

## Verifying the conjecture

(up to $\mathrm{n}=17$ )
$: f(2)=1+\operatorname{lcm}[2,1]=3$;
$: \mathbf{f}(3)=3+\operatorname{lcm}[3,3]=6$;
: $f(4)=3+\operatorname{lcm}[4,3]=15$;
$: \mathbf{f ( 5 )}=5+\operatorname{lcm}[5,5]=10$;
$: f(6)=5+\operatorname{lcm}[6,5]=35$;
$\mathbf{:} \mathbf{f ( 7 )}=7+\operatorname{lcm}[7,7]=14$;
: $\mathrm{f}(8)=7+\operatorname{lcm}[8,7]=63$;
$: f(9)=7+\operatorname{lcm}[9,7]=70$;
: $\mathrm{f}(10)=7+\operatorname{lcm}[10,7]=77$;

: $\mathrm{f}(12)=11+\operatorname{lcm}[12,11]=143$;
: $\mathbf{f ( 1 3 )}=13+\operatorname{lcm}[13,13]=26 ;$
: $\mathrm{f}(14)=13+\operatorname{lcm}[14,13]=195$;
: $\mathrm{f}(15)=13+\operatorname{lcm}[15,13]=208$;
$: f(16)=13+\operatorname{lcm}[16,13]=221 ;$
$: \mathbf{f ( 1 7 )}=17+\operatorname{lcm}[17,17]=17$;

```
then g(2)=3/1=3;
then g(3)=6/3=2;
then g(4)=15/3=5;
then g(5)=10/5=2;
then g(6)=35/5=7;
then g(7)=14/7=2;
then g(8) = 63/7 = 9;
then g(9) = 70/7 = 10;
then g(10) = 77/7 = 11;
then g(11) = 22/11 = 2;
then g(12) = 143/11 = 13;
then g(13) = 26/13 = 2;
then g(14)=195/13=15;
then g(15) = 208/13=16;
then g(16)= 221/13=17;
then g(17)=34/17=2.
```


## Note

It can be seen that, in the verified cases, the value of $g(n)$ is equal to 2 if and only if $n$ is odd prime; the value of $g(n)$ in any other case (for any other $n$ ) beside $f(1)=1$ and $f(p)=$ 2 , where p is odd prime, is equal to $\mathrm{n}+1$.

## Note

The function $g(n)=f(n) / S(f(n-1))-1$, where $f(n)=f(n-$ 1) + lcm[n, f(n - 1)] might also be interesting to study as a prime generating formula, as it gives prime values (i.e. 5, 17, 23, 191, 383) for the following consecutive values of $n$ : 4, 5, 6, 7, 8; however, for $n=9$ the value obtained is a semiprime and for $n=10$ is not even obtained an integer value, because $m$ is not always divisible by $S(m)$ so $f(n)$, which is always divisible by $f(\mathrm{n}-1)$, is not always divisible by $S(f(n-1))$.

## References:

1. Rowland, Eric, A simple prime-generating recurrence;
2. Peterson, Ivars, A new formula for generating primes;
3. Shevelev, Vladimir, Generalizations of the Rowland Theorem.
