On the mean value of the Smarandache LCM function

Lin Cheng
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract

For any positive integer n, the F.Smarandache LCM function $S L(n)$ is defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$, and let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of n into prime powers, then $\bar{\Omega}(n)=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{s} p_{s}$. The main purpose of this paper is using the elementary methods to study the mean value properties of $\bar{\Omega}(n) S L(n)$, and give a sharper asymptotic formula for it.

Keywords F.Smarandache LCM function, $\bar{\Omega}(n)$ function, mean value, asymptotic formula.

§1. Introduction and Results

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. For example, the first few values of $S L(n)$ are $S L(1)=1, S L(2)=2, S L(3)=3, S L(4)=4, S L(5)=5, S L(6)=3, S L(7)=7, S L(8)=4$, $S L(9)=6, S L(10)=5, S L(11)=11, S L(12)=4, S L(13)=13, S L(14)=7, S L(15)=5, \cdots$. About the elementary properties of $S L(n)$, some authors had studied it, and obtained some interesting results, see reference [2] and [3]. For example, Lv Zhongtian [4] studied the mean value properties of $S L(n)$, and proved that for any fixed positive integer k and any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{b_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$

where $b_{i}(i=2,3, \cdots, k)$ are computable constants.
On the other hand, Chen Jianbin [5] studied the value distribution properties of $S L(n)$, and proved that for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}(S L(n)-P(n))^{2}=\frac{2}{5} \cdot \zeta\left(\frac{5}{2}\right) \cdot \frac{x^{\frac{5}{2}}}{\ln x}+O\left(\frac{x^{\frac{5}{2}}}{\ln ^{2} x}\right)
$$

where $\zeta(s)$ is the Riemann zeta-function, and $P(n)$ denotes the largest prime divisor of n.
Now we define a new arithmetical function $\bar{\Omega}(n)$ as follows: $\bar{\Omega}(1)=0$; for $n>1$, let $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of n into prime powers, then $\bar{\Omega}(n)=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{s} p_{s}$.

Obviously, for any positive integers m and n, we have $\bar{\Omega}(m n)=\bar{\Omega}(m)+\bar{\Omega}(n)$. That is, $\bar{\Omega}(n)$ is the additive function. The main purpose of this paper is using the elementary methods to study the mean value properties of $\bar{\Omega}(n) S L(n)$, and give a sharper asymptotic formula for it. That is, we shall prove the following conclusion:

Theorem. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} \bar{\Omega}(n) S L(n)=\sum_{i=1}^{k} \frac{d_{i} x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right)
$$

where $d_{i}(i=1,2, \cdots, k)$ are computable constants.

§2. Proof of the theorem

In this section, we shall use the elementary methods to complete the proof of the theorem.
In fact, for any positive integer $n>1$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of n into prime powers, then from [2] we know that

$$
\begin{equation*}
S L(n)=\max \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{s}^{\alpha_{s}}\right\} \tag{1}
\end{equation*}
$$

and we easily to know that

$$
\begin{equation*}
\bar{\Omega}(n)=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{s} p_{s} . \tag{2}
\end{equation*}
$$

Now we consider the summation

$$
\begin{equation*}
\sum_{n \leq x} \bar{\Omega}(n) S L(n) . \tag{3}
\end{equation*}
$$

We separate all integer n in the interval $[1, x]$ into four subsets A, B, C and D as follows:
$A: p \geq \sqrt{n}$ and $n=m \cdot p$;
$B: n^{\frac{1}{3}}<p_{1}<p_{2} \leq \sqrt{n}$ and $n=m \cdot p_{1} \cdot p_{2}$, where $p_{i}(i=1,2)$ are primes;
$C: n^{\frac{1}{3}}<p \leq \sqrt{n}$ and $n=m \cdot p^{2}$;
D : otherwise.
It is clear that if $n \in A$, then from (1) we know that $S L(n)=p$, and from (2) we know that $\bar{\Omega}(n)=\bar{\Omega}(m)+p$. Therefore, by the Abel's summation formula (See Theorem 4.2 of [6]) and the Prime Theorem (See Theorem 3.2 of [7]):

$$
\pi(x)=\sum_{i=1}^{k} \frac{a_{i} \cdot x}{\ln ^{i} x}+O\left(\frac{x}{\ln ^{k+1} x}\right)
$$

where $a_{i}(i=1,2, \ldots, k)$ are computable constants and $a_{1}=1$.

We have

$$
\begin{align*}
\sum_{n \in A} \bar{\Omega}(n) S L(n) & =\sum_{\substack{m p \leq x \\
m<p}}(\bar{\Omega}(m)+p) p=\sum_{\substack{m p \leq x \\
m<p}} p^{2}+\sum_{\substack{m p \leq x \\
m<p}}(\bar{\Omega}(m) p) \\
& =\sum_{m \leq \sqrt{x}} \sum_{m<p \leq \frac{x}{m}} p^{2}+O\left(x^{2}\right) \\
& =\sum_{m \leq \sqrt{x}}\left[\pi\left(\frac{x}{m}\right) \frac{x^{2}}{m^{2}}-\pi(m) m^{2}-2 \int_{m}^{\frac{x}{m}} \pi(t) t d t\right]+O\left(x^{2}\right) \\
& =\frac{1}{3} \zeta(3) \frac{x^{3}}{\ln x}+\sum_{i=2}^{k} \frac{b_{i} x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right), \tag{4}
\end{align*}
$$

where $\zeta(s)$ is the Riemann zeta-function, and $b_{i}(i=2,3, \cdots, k)$ are computable constants.
Similarly, if $n \in B$, then we have $S L(n)=p_{2}$ and $\bar{\Omega}(n)=\bar{\Omega}(m)+p_{1}+p_{2}$. So

$$
\begin{align*}
\sum_{n \in B} \bar{\Omega}(n) S L(n)= & \sum_{\substack{m p_{1} p_{2} \leq x \\
m<p_{1}<p_{2}}}\left(\bar{\Omega}(m)+p_{1}+p_{2}\right) p_{2}=\sum_{\substack{m p_{2} p_{2} \leq x \\
m<p_{1}<p_{2}}} p_{2}^{2}+O\left(\sum_{\substack{m p_{1} p_{2} \leq x \\
m<p_{1}<p_{2}}} p_{1} p_{2}\right) \\
= & \sum_{m \leq x^{\frac{1}{3}}} \sum_{m<p_{1} \leq \sqrt{\frac{x}{m}}} \sum_{p_{1}<p_{2} \leq \frac{x}{p_{1} m}} p_{2}^{2}+O\left(x^{2}\right) \\
& \sum_{m \leq x^{\frac{1}{3}}}\left[\pi\left(\frac{x}{p_{1} m}\right) \frac{x^{2}}{p_{1}^{2} m^{2}}-\pi\left(p_{1}\right) p_{1}^{2}-2 \int_{p_{1}}^{\frac{x}{p_{1} m}} \pi(t) t d t\right] \\
& +O\left(x^{2}\right) \\
= & \sum_{i=1}^{k} \frac{c_{i} x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right), \tag{5}
\end{align*}
$$

where $c_{i}(i=1,2, \cdots, k)$ are computable constants.
Now we estimate the error terms in set C. Using the same method of proving (4), we have $S L(n)=p^{2}$ and $\bar{\Omega}(n)=\bar{\Omega}(m)+2 p$, so

$$
\begin{align*}
\sum_{n \in C} \bar{\Omega}(n) S L(n) & =\sum_{\substack{m p^{2} \leq x \\
m<p}}(\bar{\Omega}(m)+2 p) p^{2}=2 \sum_{\substack{m p^{2} \leq x \\
m<p}} p^{3}+\sum_{\substack{m p^{2} \leq x \\
m<p}}\left(\bar{\Omega}(m) p^{2}\right) \\
& =2 \sum_{m \leq x^{\frac{1}{3}}} \sum_{m<p \leq \sqrt{\frac{x}{m}}} p^{3}+O\left(x^{\frac{3}{2}}\right) \\
& =O\left(x^{2}\right) . \tag{6}
\end{align*}
$$

Finally, we estimate the error terms in set D. For any integer $n \in D$, if $S L(n)=p$ then
$p \leq \sqrt{n}$; if $S L(n)=p^{2}$, then $p \leq n^{\frac{1}{3}}$; or $S L(n)=p^{\alpha}, \alpha \geq 3$. So we have

$$
\begin{align*}
\sum_{n \in D} \bar{\Omega}(n) S L(n) & \ll \sum_{\substack{m p \leq x \\
p \leq m}}(\bar{\Omega}(m)+p) p+\sum_{\substack{m p^{2} \leq x \\
p \leq m}}(\bar{\Omega}(m)+2 p) p \\
& +\sum_{\substack{m p^{\alpha} \leq x \\
p \leq x^{\frac{1}{3}}, \alpha \geq 3}}(\bar{\Omega}(m) \alpha p) p^{\alpha} \ll \frac{x^{2}}{\ln x} . \tag{7}
\end{align*}
$$

Combining (4), (5), (6) and (7) we may immediately obtain the asymptotic formula

$$
\begin{aligned}
\sum_{n \leq x} \bar{\Omega}(n) S L(n)= & \sum_{n \in A} \bar{\Omega}(n) S L(n)+\sum_{n \in B} \bar{\Omega}(n) S L(n) \\
& +\sum_{n \in C} \bar{\Omega}(n) S L(n)+\sum_{n \in D} \bar{\Omega}(n) S L(n) \\
= & \sum_{i=1}^{k} \frac{d_{i} x^{3}}{\ln ^{i} x}+O\left(\frac{x^{3}}{\ln ^{k+1} x}\right),
\end{aligned}
$$

where $d_{i}(i=1,2, \cdots, k)$ are computable constants.
This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, not solutions, Chicago, Xiquan Publ. House, 1993.
[2] A. Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12(2001), 307-309.
[3] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, 14(2004), 186-188.
[4] Lv Zhongtian, On the F.Smarandache LCM function and its mean value, Scientia Magna, 3(2007), No.1, 22-25.
[5] Jianbin Chen, Value distribution of the F.Smarandache LCM function, Scientia Magna, 3(2007), No.2, 15-18.
[6] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[7] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.
[8] Xu Zhefeng, On the value distribution of Smarandache function, ACTA MATHEMATICA, Chinese Series, Sept., 49(2006), No. 5, 961-1200.

