Scientia Magna

Vol. 5 (2009), No. 3, 1-5

On the mean value of $S S M P(n)$ and $S I M P(n)^{1}$

Yiren Wang
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper it to studied the mean value properties of the Smarandache Superior m-th power part sequence $\operatorname{SSMP}(n)$ and the Smarandache Inferior m-th power part sequence $\operatorname{SIMP(n)}$, and give several interesting asymptotic formula for them.

Keywords Smarandache Superior m-th power part sequence, Smarandache Inferior m-th power part sequences, mean value, asymptotic formula.

§1. Introduction and Results

For any positive integer n, the Smarandache Superior m-th power part sequence $\operatorname{SSMP}(n)$ is defined as the smallest m-th power greater than or equal to n. The Smarandache Inferior m-th power part sequence $S I M P(n)$ is defined as the largest m-th power less than or equal to n. For example, if $m=2$, then the first few terms of $\operatorname{SIMP}(n)$ are: $0,1,1,1,4,4,4,4,4,9$, $9,9,9,9,9,9,16,16,16,16,16,16,16,16,16,25, \cdots$. The first few terms of $\operatorname{SSMP}(n)$ are: $1,4,4,4,9,9,9,9,9,16,16,16,16,16,16,16,25, \cdots$. If $m=3$, then The first few terms of $\operatorname{SSMP}(n)$ are: $1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27$, $27,27,27,64, \cdots$. The first few terms of $\operatorname{SIMP}(n)$ are: $0,1,1,1,1,1,1,1,8,8,8,8,8,8,8$, $8,8,8,8,8,8,8,8,8,8,8,8,27, \cdots$. Now we let

$$
\begin{aligned}
S_{n} & =(S S M P(1)+S S M P(2)+\cdots+S S M P(n)) / n \\
I_{n} & =(S I M P(1)+S I M P(2)+\cdots+S I M P(n)) / n \\
K_{n} & =\sqrt[n]{S S M P(1)+S S M P(2)+\cdots+S S M P(n)} \\
I_{n} & =\sqrt[n]{S I M P(1)+S I M P(2)+\cdots+S I M P(n)}
\end{aligned}
$$

In reference [2], Dr. K.Kashihara asked us to study the properties of these sequences. Gou Su [3] studied these problem, and proved the following conclusion:

For any real number $x>2$ and integer $m=2$, we have the asymptotic formula

$$
\sum_{n \leqslant x} S S S P(n)=\frac{x^{2}}{2}+O\left(x^{\frac{3}{2}}\right), \quad \sum_{n \leqslant x} S I S P(n)=\frac{x^{2}}{2}+O\left(x^{\frac{3}{2}}\right)
$$

and

$$
\frac{S_{n}}{I_{n}}=1+O\left(n^{-\frac{1}{2}}\right), \quad \lim _{n \rightarrow \infty} \frac{S_{n}}{I_{n}}=1 .
$$

[^0]In this paper, we shall use the elementary method to give a general conclusion. That is, we shall prove the following:

Theorem 1. Let $m \geq 2$ be an integer, then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} S S M P(n)=\frac{x^{2}}{2}+O\left(x^{\frac{2 m-1}{m}}\right)
$$

and

$$
\sum_{n \leq x} S I M P(n)=\frac{x^{2}}{2}+O\left(x^{\frac{2 m-1}{m}}\right)
$$

Theorem 2. For any fixed positive integer $m \geq 2$ and any positive integer n, we have the asymptotic formula

$$
S_{n}-I_{n}=\frac{m(m-1)}{2 m-1} n^{1-\frac{1}{m}}+O\left(n^{1-\frac{2}{m}}\right) .
$$

Corollary 1. For any positive integer n, we have the asymptotic formula

$$
\frac{S_{n}}{I_{n}}=1+O\left(n^{-\frac{1}{m}}\right)
$$

and the limit $\lim _{n \rightarrow \infty} \frac{S_{n}}{I_{n}}=1$.
Corollary 2. For any positive integer n, we have the asymptotic formula

$$
\frac{K_{n}}{L_{n}}=1+O\left(\frac{1}{n}\right)
$$

and the limit $\lim _{n \rightarrow \infty} \frac{K_{n}}{L_{n}}=1, \lim _{n \rightarrow \infty}\left(K_{n}-L_{n}\right)=0$.

§2. Proof of the theorems

In this section, we shall use the Euler summation formula and the elementary method to complete the proof of our Theorems. For any real number $x>2$, it is clear that there exists one and only one positive integer M satisfying $M^{m}<x \leq(M+1)^{m}$. That is, $M=x^{\frac{1}{m}}+O(1)$. So we have

$$
\begin{aligned}
\sum_{n \leq x} S S M P(n) & =\sum_{n \leq M^{m}} S S M P(n)+\sum_{M^{m}<n \leq x} S S M P(n) \\
& =\sum_{k \leq M}\left(k^{m}-(k-1)^{m}\right) k^{m}+\left([x]-\left(M^{m}+1\right)\right)(M+1)^{m} \\
& =\sum_{k \leq M}\left(m k^{2 m-1}+O\left(k^{2 m-2}\right)\right)+\left([x]-M^{m}-1\right)(M+1)^{m} \\
& =\frac{m \cdot M^{2 m}}{2 m}+O\left(M^{2 m-1}\right)+\left([x]-M^{m}-1\right)(M+1)^{m} \\
& =\frac{M^{2 m}}{2}+O\left(M^{2 m-1}\right)
\end{aligned}
$$

Note that $M=x^{\frac{1}{m}}+O(1)$, from the above estimate we have the asymptotic formula

$$
\sum_{n \leq x} S S M P(n)=\frac{x^{2}}{2}+O\left(x^{2-\frac{1}{m}}\right)
$$

This proves the first formula of Theorem 1.
Now we prove the second one. For any real number $x>1$, we also have

$$
\begin{aligned}
\sum_{n \leq x} S I M P(n) & =\sum_{n<M^{m}} S I M P(n)+\sum_{M^{m} \leq n \leq x} S I M P(n) \\
& =\sum_{k \leqslant M}\left(k^{m}-\left(k-1^{m}\right)\right)(k-1)^{m}+\sum_{M^{m} \leqslant n \leqslant x} M^{m} \\
& =\sum_{k \leqslant M}\left(m k^{2 m-1}+O\left(k^{2 m-2}\right)\right)+\left([x]-M^{m}+1\right) M^{m} \\
& =\frac{M^{2 m}}{2}+O\left(M^{2 m-1}\right)+\left([x]-M^{m}+1\right) M^{m}
\end{aligned}
$$

Note that

$$
\left([x]-M^{m}+1\right) M^{m} \leqslant M^{2 m-1} \leq x^{1-\frac{1}{m}} .
$$

Therefore,

$$
\sum_{n \leq x} S S M P(n)=\frac{x^{2}}{2}+O\left(x^{2-\frac{1}{m}}\right)
$$

This completes the proof of Theorem 1.
To prove Theorem 2, let $x=n$, then from the method of proving Theorem 1 we have

$$
\begin{aligned}
S_{n}-I_{n}= & \frac{1}{n}(S S M P(1)+\operatorname{SSMP}(2)+\cdots+\operatorname{SSMP}(n)) \\
& -\frac{1}{n}(\operatorname{SIMP}(1)+\operatorname{SIMP}(2)+\cdots+\operatorname{SIMP}(n)) \\
= & \frac{1}{n}\left(\sum_{k \leq M}\left(k^{m}-(k-1)^{m}\right) k^{m}+\left([x]-\left(M^{m}+1\right)\right)(M+1)^{m}\right) \\
& -\frac{1}{n}\left(\sum_{k \leqslant M}\left(k^{m}-\left(k-1^{m}\right)\right)(k-1)^{m}+\left([x]-M^{m}+1\right) M^{m}\right) \\
= & \frac{1}{n} \sum_{k \leq M} m(m-1) k^{2 m-2}+O\left(\frac{1}{n} M^{2 m-2}\right) \\
= & \frac{m(m-1)}{n(2 m-1)} M^{2 m-1}+O\left(\frac{1}{n} M^{2 m-2}\right) .
\end{aligned}
$$

Note that $M^{m}<n \leq(M+1)^{m}$ or $M=n^{\frac{1}{m}}+O(1)$, from the above formula we may immediately deduce that

$$
S_{n}-I_{n}=\frac{m(m-1)}{2 m-1} n^{1-\frac{1}{m}}+O\left(n^{1-\frac{2}{m}}\right)
$$

This completes the proof of Theorem 2.

Now we prove the Corollaries. Note that the asymptotic formula

$$
I_{n}=\frac{1}{n}(S I M P(1)+S I M P(2)+\cdots+S I M P(n))=\frac{1}{n}\left(\frac{n^{2}}{2}+O\left(n^{\frac{2 m-1}{m}}\right)\right)=\frac{n}{2}+O\left(n^{1-\frac{1}{m}}\right)
$$

and
$S_{n}=\frac{1}{n}(S S M P(1)+S S M P(2)+\cdots+S S M P(n))=\frac{1}{n}\left(\frac{n^{2}}{2}+O\left(n^{\frac{2 m-1}{m}}\right)\right)=\frac{n}{2}+O\left(n^{1-\frac{1}{m}}\right)$.
From the above two formula we have

$$
\frac{S_{n}}{I_{n}}=\frac{\frac{n}{2}+O\left(n^{\frac{m-1}{m}}\right)}{\frac{n}{2}+O\left(n^{\frac{m-1}{m}}\right)}=1+O\left(n^{-\frac{1}{m}}\right)
$$

Therefore, we have the limit formula

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{I_{n}}=1
$$

Using the same method we can also deduce that

$$
K_{n}=\sqrt[n]{S S M P(1)+S S M P(2)+\cdots+S S M P(n)}=\left(\frac{n^{2}}{2}+O\left(n^{\frac{2 m-1}{m}}\right)\right)^{\frac{1}{n}}
$$

and

$$
L_{n}=\sqrt[n]{S I M P(1)+S I M P(2)+\cdots+S I M P(n)}=\left(\frac{n^{2}}{2}+O\left(n^{\frac{2 m-1}{m}}\right)\right)^{\frac{1}{n}}
$$

From these formula we may immediately deduce that

$$
\frac{K_{n}}{L_{n}}=\left(\frac{\frac{n^{2}}{2}+O\left(n^{\frac{2 m-1}{m}}\right)}{\frac{n^{2}}{2}+O\left(n^{\frac{2 m-1}{m}}\right)}\right)^{\frac{1}{n}}=\left(1+O\left(n^{-\frac{1}{m}}\right)\right)^{\frac{1}{n}}=1+O\left(\frac{1}{n}\right)
$$

Therefore, we have the limit formula

$$
\lim _{n \rightarrow \infty} \frac{K_{n}}{L_{n}}=1
$$

Note that $\lim _{n \rightarrow \infty} K_{n}=\lim _{n \rightarrow \infty} L_{n}=1$, we may immediately deduce that

$$
\lim _{n \rightarrow \infty}\left(K_{n}-L_{n}\right)=0
$$

This completes the proof of Corollary 2.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago: Xiquan Publishing House, 1993.
[2] Kenichiro Kashihara, Comments and topics on Smarandache notions and problems, Erhus University Press, USA, 1996.
[3] Gou Su, On the mean values of $\operatorname{SSSP}(\mathrm{n})$ and $\operatorname{SISP}(\mathrm{n})$, Pure and Applied Mathematics, Vol. 25(2009), No. 3, 431-434.
[4] M. L. Perez, Florentin Smarandache Definitions, Solved and Unsolved Problems, Conjectures and Theorems in Number theory and Geometry, Chicago: Xiquan Publishing House, 2000.
[5] F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, 2006.
[6] Shen Hong, A new arithmetical function and its the value distribution, Pure and Applied Mathematics, Vol. 23(2007), No. 2, 235-238.
[7] Tom M. Apostol, Introduction to Analytical Number Theory, New York: Spring-Verlag, 1976.
[8] Du Fengying, On a conjecture of the Smarandache function $S(n)$, Vol. 23(2007), No. 2, 205-208.
[9] Xu Zhefeng, The value distribution property of the Smarandache function, Acta Mathematica Sinica, Chinese Series, Vol. 49(2006), No. 5, 1009-1012.
[10] Charles Ashbacher, Some problems on Smarandache function, Smarandache Notions Journal, Vol. 6(1995), No. 1-2-3, 21-36.
[11] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
[12] Liu Hongyan and Zhang Wenpeng, A number theoretic function and its mean value property, Smarandache Notions Journal, Vol. 13(2002), No. 1-2-3, 155-159.
[13] Wu Qibin, A composite function involving the Smarandache function, Pure and Applied Mathematics, Vol. 23(2007), No. 4, 463-466.
[14] Yi Yuan and Kang Xiaoyu, Research on Smarandache Problems (in Chinese), High American Press, 2006.
[15] Chen Guohui, New Progress On Smarandache Problems (in Chinese), High American Press, 2007.
[16] Liu Yanni, Li Ling and Liu Baoli, Smarandache Unsolved Problems and New Progress (in Chinese), High American Press, 2008.
[17] Wang Yu, Su Juanli and Zhang Jin, On the Smarandache Notions and Related Problems (in Chinese), High American Press, 2008.
[18] Li Jianghua and Guo Yanchun, Research on Smarandache Unsolved Problems (in Chinese), High American Press, 2009.
[19] Maohua Le, Some problems concerning the Smarandache square complementary function (IV), Smarandache Notions Journal, Vol. 14(2004), No. 2, 335-337.
[20] Liu Yaming, On the solutions of an equation involving the Smarandache function, Scientia Magna, Vol. 2(2006), No. 1, 76-79.

[^0]: ${ }^{1}$ This work is supported by the Shaanxi Provincial Education Department Foundation 08JK433.

