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Abstract

The novel multivalued neutrosophic aggregation operators are proposed in this paper to han-

dle the complicated decision-making situations with correlation between specific information

and partitioned parameters at the same time, which are based on weighted power partitioned

Hamy mean (WMNPPHAM) operators for multivalued neutrosophic sets (MNS) proposed by

combining the Power Average and Hamy operators. Firstly, the power partitioned Hamy

mean (PPHAM) is capable of capture the correlation between aggregation parameters and

the relationship among attributes dividing several parts, where the attributes are dependent

definitely within the interchangeable fragment, other attributes in divergent sections are irrele-

vant. Secondly, because MNS can effectively represent imprecise, insufficient, and uncertain

information, we proposed the multivalued neutrosophic PMHAM (WMNPHAM) operator for

MNS and its partitioned variant (WMNPPHAM) with the characteristics and examples. Finally,

this multiple attribute group decision making (MAGDM) technique is proven to be feasible by

comparing with the existing methods to confirm this method’s usefulness and validity.

Introduction

The world is full of partial, imprecise, inconsistent, and uncertain data that can’t be character-

ized with precise numbers [1–3]. In order to deal with these complex problems, the MAGDM

method can sort and adopt the superlative alternative from a set of complicated options [4].

Zadeh suggested fuzzy set to solve MAGDM problems in order to decrease information loss

and increase assessment accuracy [5]. However, main limitation of fuzzy set is that it can’t han-

dle complex fuzzy information adequately because its membership limit is only one value. As a

result, Atanassov expanded fuzzy set to the intuitionistic fuzzy set [6–8]. However, in the face

of conflicting, partial, and uncertain data, the foregoing has some limitations. Smarandache

proposed the notion of neutrosophic sets to address this issue, which incorporated an indepen-

dent indeterminacy membership function [9]. Such as the generalization of fuzzy sets, the sin-

gle-valued neutrosophic set and multivalued neutrosophic sets are some of the achievements

in this subject [10–17].
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Because the decision makers typically cannot generate precise assessment values for every

membership due to limited knowledge and experience [18–20], the MNS can manage the

unclear information that has more than one value of membership offered by certain decision

makers. As a result, MNS can cope with convoluted fuzzy information better than other fuzzy

sets, but little research in this subject has been conducted, thus it is critical to investigate the

MADM or MAGDM approach using MNS.

Aggregation operators, as a critical tool for solving MADM or MAGDM issues, may com-

bine information from all qualities and decision makers and rate the options [21–29]. How-

ever, there has been little progress in the research of MNS aggregation operators thus far. As

previously stated, ranking systems such as PROMETHEE [30, 31], TODIM [32, 33], and others

were unable to produce complete values for many options. Furthermore, approaches based on

aggregation operators can produce both ranking results and complete values [34].

Existing MAGDM approaches are unable to capture complex relationship patterns between

characteristics properly. However, actual MADM or MAGDM situations with many attribute

correlations need the use of developing operators as Power average operator, Maclaurin sym-

metric mean operator [35–39]. When compared with Heronian mean which was proposed by

Hara [40], the Hamy mean operator can manage the interrelationships between numerous

qualities more flexibly. Furthermore, Liu [41], Wu [42] point out that Hamy mean operator is

a more powerful extension of MSM. However, the classic Hamy mean operator has several

limitations, such as the fact that it can only aggregate crisp integers and cannot directly estab-

lish relationships among multiple-input arguments with partition structure.

It is critical to expand the Hamy mean operator to handle complicated MAGDM issues

with ambiguous information and interrelationships of attributes, the novel multi-valued neu-

trosophic power partitioned hamy mean (MNPPHM) operator is presented in this paper,

which is based on the Hamy operator. As a result, our research concentrates on the nominated

operators to build the MAGDM technique using MNS. The contributions are:

1. The PPHAM operator is extended to improve the ability of existing operators to handle the

specific information and partitioned parameters.

2. The PHAM operator (WMNPHAM) is presented with MNS, as well as its partitioned oper-

ator (WMNPPHAM).

3. The developed operators’ properties are demonstrated with numerous unique examples.

4. A practical MAGDM approach is generalized with the WMNPPHAM operator.

5. The applicability and efficacy of the provided MAGDM technique is demonstrated.

The following is the structure of this paper. We introduce the fundamental principles and

operating norms of MNS and Hamy mean operator operators in Section 2. Section 3 proposes

the WMNPHAM and WMNPPHAM. In Section 4, we construct MAGDM technique with

these operators. Section 5 provides an example that compares the proposed method to existing

ways to demonstrate its viability. Finally, the findings are described in Section 6.

Preliminaries

The neutrosophic fuzzy set

Definition 1. As a universe of objects K, where q is a generic element in K, the single valued

neutrosophic set Q in K is defined as:

Q ¼ q
�
UK qð Þ;DK qð Þ;MK qð Þ

�
jq 2 K

� �
ð1Þ
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where UK(q), DK(q) and MK(q) denote the truth-membership, the indeterminacy-membership

and the falsity-membership of the element x 2 X to the set K respectively. For each point q in

Q, we have UK(q), DK(q), MK(q) 2 [0,1], 0� UK(q) + DK(q) + MK(q)� 3.

For simplicity, we may utilize the simpler form Q = (Uq, Dq, Mq) to represent single valued

neutrosophic set, and the element q can be termed as a single valued neutrosophic number.

Definition 2. K is a nonempty fixed set, the multivalued neutrosophic set (MNS) in Q could

be characterized as:

I ¼ q;~uðqÞ; ~dðqÞ;~lðqÞ
D E

; q 2 K
n o

ð2Þ

where ~u qð Þ ¼ f~mj~m 2 ~u xð Þg, ~d qð Þ ¼ f~dj~r 2 ~d xð Þg and~lðqÞ ¼ f~lj~l 2 ~lðqÞg are three sets

with some values in interval [0,1], and satisfying the limits: ~m; ~r; ~l 2 0; 1½ � and

0 � sup~mþ þ sup~rþ þ sup~lþ � 3.

The ~i ¼ ~mðqÞ; ~rðqÞ; ~lðqÞ
n o

is known as a multivalued neutrosophic number which is indi-

cated by the simplified symbol ~i ¼ ~m; ~r; ~l
n o

.

Definition 3. Let I 2MNS, the complement of an MNS may be characterized as Ic stated as

follows:

Ic ¼
[

m2UI
lf g;
[

r2DI
1 � rf g;

[

l2LI
mf g

D E
ð3Þ

Definition 4. Two MNS ~I 1 ¼ ~u1;
~d1;

~l1
n o

and ~I 2 ¼ ~u2;
~d2;

~l2
n o

, and k> 0, the basic opera-

tions can be defined as:

1.

~i1 �
~i2 ¼ ~u1 � ~u2;

~d1 �
~d2;

~l1 �~l2
n o

¼
[

~m1 2 u1; ~r1 2 d1;
~l1 2 l1;

~m2 2 u2; ~r2 2 d2;
~l2 2 l2;

m1 þ m2 � m1m2; r1r2; l1l2f g; ð4Þ

2.

~i1 �
~i2 ¼ ~u1 � ~u2;

~d1 �
~d2;

~l1 �~l2
n o

¼
[

~m1 2 u1; ~r1 2 d1;
~l1 2 l1;

~m2 2 u2; ~r2 2 d2;
~l2 2 l2;

m1m2; r1 þ r2 � r1r2; l1 þ l2 � l1l2f g; ð5Þ

3.

k~i1 ¼
[

~m12u1 ;~r12d1 ;
~l12l1

1 � ð1 � m1Þ
k
; rk

1
; l

k
1

n o
; ð6Þ
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4.

~ik
1
¼

[

~m12u1 ;~r12d1 ;
~l12l1

mk
1
; 1 � 1 � u1ð Þ

k
; 1 � 1 � l1ð Þ

k
n o

ð7Þ

Definition 5. Such any MNS ~i,

G ~ii
� �
¼

1

l~ui
� l~di � l~l i

X

gi2~u i ;mi2~d i ;li2~l i ;

�
mi þ 1 � rið Þ þ 1 � lið Þ

�.
3 ð8Þ

is regarded as the score function of ~n, where l~uA
,l~dA and l~lA reflects the numbers of the values in

~ui,
~di,

~li.
Definition 6. For any a MNS ~i,

Bð~iÞ ¼
1

l~ui
� l~di � l~l i

X

mi2~u i ;ri2~d i ;li2~l i ;

ðmi þ ri þ liÞ
.

3 ð9Þ

Assume ~i1 ¼ ~u1;
~d1;

~l1
n o

and ~i2 ¼ ~u2;
~d2;

~l2
n o

are two MNS, the comparison algorithm of

MNS is determined by the following equations:

1. If Gð~i1Þ � Gð~i2Þ and B ~i1

� �
> B ~i2

� �
, then ~i1 �

~i2

2. If Gð~i1Þ ¼ Gð~i2Þ and B ~i1

� �
¼ B ~i2

� �
, then ~i1 �

~i2

3. If Gð~i1Þ � Gð~i2Þ and B ~i1

� �
< B ~i2

� �
, then ~i1 �

~i2.

Definition 7. Assume P ¼ ~UP;
~DP;

~lP
n o

and Q ¼ ~UQ;
~DQ;

~LQ

� �
, then the Hamming dis-

tance between them can be expressed in terms:

dðP;QÞ ¼
1

6
ðmax
mP2 ~Up

min
mQ2 ~UQ

jmP � mQj þ max
mQ2 ~UQ

min
mP2 ~UP

jmQ � mAj

þmax
rP2~DP

min
rQ2~DQ

jrP � rQj þ max
rP2~DP

min
rQ2~DQ

jrQ � rPj

þmax
lA2~LA

min
lB2~LB

jlP � lQj þmax
lB2~LB

min
lQ2~LQ

jlQ � lPjÞ

ð10Þ

Hamy mean operator

Definition 8. The form of Hamy mean operator is:

HAM jð Þ w1;w2; . . . ;wnð Þ ¼

X

1�i1 ;...;ij�n

Yj

m¼1

wim

 !1=j

Cj
n

ð11Þ

Where (i1, i2, . . .,ij) explores every j-tuple combination and Cj
n is the binomial coefficient, and

Cj
n ¼

n!

j! n� jð Þ!
.

Obviously, the Hamy mean operator has several characteristics:

1. HAM(j) (0,0,. . .,0) = 0, HAM(j)(w, w,. . .,w) = w;
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2. HAM(j) (w1, w2,. . .,wn)�HAM(j) (y1, y2,. . .,yn), if wi� yi for all i;

3. min{wi}�HAM(j) (w1, w2,. . .,wn)�max{wi}.

Power aggregation operators

Definition 9. The Power aggregation operator is the mapping Rn! R as:

PA a1; a2; . . .; anð Þ ¼

Xn

i¼1
1þ S aið Þð Þai

Xn

i¼1
1þ S aið Þð Þ

ð12Þ

Where S aið Þ ¼
Xn

i¼1;j6¼i
Sup ai;aj

� �
, and Sup(αi, αj) is the support as αi from αj. And certain

qualities are detailed as follows:

1. Sup(αi, αj) 2 [0,1];

2. Sup(αi, αj) = Sup(αj, αi)

3. Sup(αi, αj)� Sup(αe, αf), if |αe − αf|<|αi − αj|.

Partitioned Hamy mean (PHAM) operator

Definition 10. The Partitioned Hamy mean operator (PHAM) is expressed in the form as:

PHAM pð Þ x1; x2; . . . ; xnð Þ ¼
1

l

Xl

r¼1

X

1�i1<...<ip�q

Yp

j¼1

xij

 !1=p

Cp
q

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð13Þ

Where (i1, i2, . . .,ip) explores the whole p-tuple combination and Cp
q is the binomial coefficient,

and Cp
q ¼

q!

p! q� pð Þ!
.

Hamy mean operators based on multivalued neutrosophic sets

In summary, we will investigate the Hamy mean operator and Power aggregation operator to

deal with MNS and build MNPPHAM operator and WMNPPHAM operator, as well as

explain various attributes and specific circumstances of these new operators, with the operat-

ing regulations of MNS.

MNPHAM operator

Definition 11. ~ni ¼ ~ui;
~di;

~li
n o

i ¼ 1; 2; . . .; nð Þ are MNS, and x = 1,2,. . .,m The MNPHAM

operator is described this way:

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ ¼
1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1

nð1þ Tð~nij
ÞÞ~nijXn

z¼1
1þ T ~nzð Þð Þ

 !1
x

0

B
B
@

1

C
C
A; ð14Þ

where T ~nj

� �
¼
Pn

z¼1
z6¼1

Sup ~nz; ~nj

� �
is support degree, which meets:
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1. Sup ~nz; ~n j

� �
2 0; 1½ �;

2. Sup ~nz; ~n j

� �
¼ Sup ~n j; ~nn

� �
;

3. if d ~nz; ~n j

� �
� d ~nd; ~ny

� �
, then Sup ~nz; ~n j

� �
� Sup ~nd; ~ny

� �
, where d ~nz; ~n j

� �
indicate dis-

tance among any two neutrosophic sets signed by the Definition 7.

The denominator Cx
n represents the binomial coefficient n!

x! n� xð Þ!
and n is the balancing coeffi-

cient in the preceding Eq (14), we could note

sz ¼
1þ Tð~nij

Þ
� �

Xn

z¼1
1þ T ~nzð Þð Þ

ð15Þ

then power weight vector is identified by (σ1, σ2,. . .,σn). As a result, Eq (14) can be documented

in the following simplified form:

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ ¼
1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1
nsij

~nij

� �1
x

� �

ð16Þ

The following theorems could be derived from the operational rules of the MNS:

Theorem 1. Let ~ni ¼ ~ui;
~di;

~li
n o

i ¼ 1; 2; . . .; nð Þ be a MNS, the result of aggregation is still

MNS.

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ ¼
1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1
nsij

~nij

� �1

x

0

B
B
@

1

C
C
A

¼

1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~g ij2
~t ij

1 � 1 � gij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n ;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~d ij2
~i ij

1 � dij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~Z ij2
~f ij

1 � Zij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð17Þ

Proof. Since

1. ~i1 �
~i2 ¼ ~u1 � ~u2;

~d1 �
~d2;

~l1 �~l2
n o

¼
[

~m1 2 u1; ~r1 2 d1;
~l1 2 l1;

~m2 2 u2; ~r2 2 d2;
~l2 2 l2;

m1 þ m2 � m1m2; r1r2; l1l2f g;
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2. ~i1 �
~i2 ¼ ~u1 � ~u2;

~d1 �
~d2;

~l1 �~l2
n o

¼

[

~m1 2 u1; ~r1 2 d1;
~l1 2 l1;

~m2 2 u2; ~r2 2 d2;
~l2 2 l2;

m1m2; r1 þ r2 � r1r2; l1 þ l2 � l1l2f g;

3. k~i1 ¼
[

~m12u1 ;~r12d1 ;
~l12l1

1 � ð1 � m1Þ
k
; rk

1
; l

k
1

n o
;

4. ~ik
1
¼

[

~m12u1;~r12d1 ;
~l12l1

mk
1
; 1 � 1 � r1ð Þ

k
; 1 � 1 � l1ð Þ

k
n o

we have

nsij
~nij
¼ [~m ij2~uij

1 � ð1 � mij
Þ
nsij ;[~r ij2

~dij
r
nsij
ij ;[~l ij2

~l ij
l
nsij
ij

� �
;

and

Yx

j¼1
nsij

~nij
¼

Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

; 1 �
Yx

j¼1

[~r ij2~r ij
1 � rij

� �nsij
� �

 !

; 1 �
Yx

j¼1

[~l ij2
~l ij

1 � lij
� �nsij

� �
 ! !

so

Yx

j¼1
nsij

~n ij

� �1
x
¼

Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

 !1
x

; 1 �
Yx

j¼1

[~r ij2
~dij

1 � rij

� �nsij
� �

 !1
x

; 1 �
Yx

j¼1

[~l ij2
~l ij

1 � lij

� �nsij
� �

 !1
x

0

@

1

A

then

1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1
nsij

~n ij

� �1

x

0

B
B
@

1

C
C
A

¼ 1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij 2~uij
1 � 1 � mij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n ;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~r ij 2
~dij

1 � rij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

;

0

B
B
B
B
B
B
@

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~l ij 2
~l ij

1 � lij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

1

C
C
C
C
C
C
A
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Therefore,

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ

¼
1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1
nsij

~n ij

� �1

x

0

B
B
@

1

C
C
A

¼ 1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~g ij 2
~t ij

1 � 1 � gij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n ;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~d ij 2
~i ij

1 � dij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

;

0

B
B
B
B
B
B
@

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~Z ij 2
~f ij

1 � Zij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

1

C
C
C
C
C
C
A

In addition, the NPHAM has some features as:

(1) Theorem 2 (Idempotency). ~ni ¼ ~n ¼ ~u; ~d;~l
n o

, for (i = 1, 2,. . .,n), then

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ ¼ ~n ¼ ~u; ~d;~l
n o

: ð18Þ

Proof. Since ~ni ¼ ~n ¼ ~u; ~d;~l
n o

, for (i = 1, 2,. . .,n), then

nsij
¼

nð1þ Tð~nij
ÞÞ

Xn

z¼1
ð1þ T ~nzð ÞÞ

¼ 1

So, according to Theorem 1, we have

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ

¼
1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1
nsij

~n ij

� �1

x

0

B
B
@

1

C
C
A

¼ 1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij 2~uij
1 � 1 � mij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n ;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~r ij 2
~dij

1 � rij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

;

0

B
B
B
B
B
B
@

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~l ij 2
~l ij

1 � lij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

1

C
C
C
C
C
C
A

¼ [~m ij2~uij ;~r ij2
~dij ;

~l ij2
~l ij

1 � 1 � 1 � 1 � mij

� �nsij
� �1

x
� �

1
Cxn ; 1 � 1 � rij

� �nsij
� �1

x
� � 1

Cxn
; 1 � 1 � lij

� �nsij
� �1

x
� � 1

Cxn

 !

¼ [~m ij2~uij ;~r ij2
~dij ;

~l ij2
~l ij
m;r; lð Þ ¼ ~n ¼ ~u; ~d;~l

n o
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(2) Theorem 3 (monotonicity). Let ~niði ¼ 1; 2; � � � ; nÞ and ~n0 iði ¼ 1; 2; � � � ; nÞ be two

MNS, and suppose gi � g
0
i; di � d

0

i and Zi � Z
0
i for all i, then

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ � MNPHAM xð Þ ~n 01; ~n
0
2; � � � ; ~n

0
nð Þ: ð19Þ

Proof. (1)Since mi � m
0
i for all i, then

mij
� m0 ij ; 1 � mij

� 1 � m0 ij

Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

 !1
x

�
Yx

j¼1

[~m ij2~uij
1 � 1 � m0ij

� �nsij
� �

 !1
x

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

 !1
x

� 1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � m0ij

� �nsij
� �

 !1
x

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

 !1
x

0

@

1

A �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � m0 ij

� �nsij
� �

 !1
x

0

@

1

A

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

�
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � m0ij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

So

1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � mij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

� 1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~m ij2~uij
1 � 1 � m0ij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

(2) Since ri � r
0
i for all i, then

rij
� r0 ij ; 1 � rij

� 1 � r0 ij

Yx

j¼1

[~r ij2
~dij

1 � rij

� �nsij
� �

 !1
x

�
Yx

j¼1

[~r ij2
~dij

1 � r0ij

� �nsij
� �

 !1
x

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~r ij2
~dij

1 � rij

� �nsij
� �

 !1
x

0

@

1

A �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~r ij2
~dij

1 � r0 ij

� �nsij
� �

 !1
x

0

@

1

A

So

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~r ij2
~dij

1 � rij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

�
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~r ij2
~dij

1 � r0ij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn
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(3) Since li � l
0

i, for all i, then

lij � l
0

ij
; 1 � lij � 1 � l

0

ij

Yx

j¼1

[~l ij2
~l ij

1 � lij

� �nsij
� �

 !1
x

�
Yx

j¼1

[~l ij2
~l ij

1 � lij

� �nsij
� �

 !1
x

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~l ij2
~l ij

1 � lij

� �nsij
� �

 !1
x

0

@

1

A �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~l ij2
~l ij

1 � l
0

ij

� �nsij
� �

 !1
x

0

@

1

A

So

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~l ij2
~l ij

1 � lij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

�
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[~l ij2
~l ij

1 � l
0

ij

� �nsij
� �

 !1
x

0

@

1

A

0

@

1

A

1
Cxn

we can get

MNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ � MNPHAM xð Þ ~n01; ~n
0
2; � � � ; ~n

0
nð Þ:

(3) Theorem 4 (Boundedness). The MNHPHM operator situates within:

min ~n1; ~n2; � � � ; ~nnð Þ � MNHFHM ~n1; ~n2; � � � ; ~nnð Þ � max ~n1; ~n2; � � � ; ~nnð Þ ð20Þ

Proof. Let m ¼ min ~n1; ~n2; � � � ; ~nnð Þ;M ¼ max ~n1; ~n2; � � � ; ~nnð Þ, since m � ~nij
� M,

m ¼ min ~n1; ~n2; � � � ; ~nnð Þ � MNPHAM ~n1; ~n2; � � � ; ~nnð Þ

and

MNPHAM ~n1; ~n2; � � � ; ~nnð Þ � max ~n1; ~n2; � � � ; ~nnð Þ ¼ M

then

m ¼ min ~n1; ~n2; � � � ; ~nnð Þ

� MNPHAM ~n1; ~n2; � � � ; ~nnð Þ

� max ~n1; ~n2; � � � ; ~nnð Þ

WMNPHAM operator

Definition 12.~ni ¼ ~ui;
~di;

~li
n o

is a MNS, and weighted neutrosophic set power Hamy mean

operator (WMNPHAM) is expressed in the form.

WMNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ

¼
1

Cx
n

X

1�i1<���<ix�n

Yx

j¼1
ntij ~nij

� �
1

x

0

B
@

1

C
A

ð21Þ
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where ti ¼
oi 1þT ~n ið Þð ÞXm

z¼1
oi 1þ T ~nzð Þð Þ

, T ~n j

� �
¼
Xm

z¼1
z 6¼1

Sup ~nz; ~n j

� �
which meet the specified

criteria:

1. Sup ~nz; ~nj

� �
2 0; 1½ �;

2. Sup ~nz;~nj

� �
¼ Sup ~nj; ~nn

� �
;

3. if d ~nz; ~n j

� �
� d ~nd; ~ny

� �
then Sup ~nz; ~n j

� �
� Sup ~nd; ~ny

� �
, where d ~nz; ~nj

� �
represent the

measure of distance in definition 7. ω = (ω1,ω2,. . .,ωn)T is the weight vector of

~ni i1; i2; . . . ; inð Þ such that ωi 2 [0,1] and
Xn

i¼1
oi ¼ 1 i1; i2; . . . ; inð Þ.

Theorem 5. Assume ~ni ¼ ~ui;
~di;

~li
n o

be MNS, So the result of aggregation is still MNS.

WMNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ

¼

1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[mij2uij
1 � 1 � mij

� �ntij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n ;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[rij2dij
1 � rij

� �ntij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[lij2lij
1 � lij

� �ntij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
ð22Þ

Proof. This theorem’s proof is analogous to that of Theorem 1.

(1)Theorem 6 (Idempotency).~ni ¼ ~n ¼ ~u; ~d;~l
n o

, for all i, we have

WNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ ¼ ~n ¼ ~u; ~d;~l
n o

ð23Þ

(2) Theorem 7 (monotonicity). If ~ni i ¼ 1; 2; � � � ; nð Þ and ~n0 i i ¼ 1; 2; � � � ; nð Þ be two neutro-

sophic sets, and suppose mi � m
0
i; ri � r

0
i and li � l

0

i for all i, then

WNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ �WNPHAM xð Þ ~n 01; ~n
0
2; � � � ; ~n

0
nð Þ: ð24Þ

Proof. (1) Since mi � m
0
i for all i, then

mij
� m0 ij ; 1 � gij � 1 � g0ij

(2) Since ri � r
0
i for all i, then

rij
� r0ij ; 1 � dij � 1 � d

0

ij

(3) Since li � l
0

i, for all i, then

lij � l
0

ij
; 1 � lij � 1 � l

0

ij
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So, we can get

WNPHAM xð Þ ~n1; ~n2; � � � ; ~nnð Þ �WNPHAM xð Þ ~n 01; ~n
0
2; � � � ; ~n

0
nð Þ:

(3) Theorem 8 (Boundedness). The WNPHAM operator situates within:

min ~n1; ~n2; � � � ; ~nnð Þ �WNPHAM ~n1; ~n2; � � � ; ~nnð Þ � max ~n1; ~n2; � � � ; ~nnð Þ ð25Þ

Proof. Let m ¼ min ~n1; ~n2; � � � ; ~nnð Þ;M ¼ max ~n1; ~n2; � � � ; ~nnð Þ, since m � ~nij
� M, accord-

ing to Theorem 3, we could obtain:

m ¼ min ~n1; ~n2; � � � ; ~nnð Þ �WNPHAM ~n1; ~n2; � � � ; ~nnð Þ

And

WNPHAM ~n1; ~n2; � � � ; ~nnð Þ � max ~n1; ~n2; � � � ; ~nnð Þ ¼ M

Then

m ¼ min ~n1; ~n2; � � � ; ~nnð Þ

�WNPHAM ~n1; ~n2; � � � ; ~nnð Þ

� max ~n1; ~n2; � � � ; ~nnð Þ

WMNPWPPHAM operator

Definition 13. Let Z ¼ ~n1; ~n2; � � � ; ~nnð Þ be a collection of MNS, and the elements could well be

separated into l parts P = (P1, P2,� � �,Pl), where Pt ¼ ~nt1; ~nt2; � � � ; ~ntjPt j

n o
, t = (1, 2,� � �,l), Ps

T
Pt

=∅, [l
t¼1

Pt ¼ ~n, the WMNPPHAM operator is described as follows:

WMNPPHAMp ~n1; ~n2; � � � ; ~nnð Þ

¼
1

l
�
l

t¼1

�
1�i1<���<ix�q

�
p

j¼1

ntij ~nij

� �
1

p
,

Cp
q

0

B
B
@

1

C
C
A

ð26Þ

Furthermore, the foregoing operators satisfy the Theorems of Idempotency, Commutativ-

ity, and Boundedness. However, the proofs are much like the proofs of the Theorems for

MNPPHAM and WMNPPHAM operators, therefore the proof procedure is omitted here.

MAGDM approach with WMNPPHAM operators

In this part, we will utilize the WMNPPHAM operators to solve the MAGDM issue. For exam-

ple, a MAGDM issue concludes a set of m alternatives A = {A1, A2,. . .,Am}, the decision makers

D = {D1, D2,. . .,Dz} with their weight vector θ = (θ1, θ2,. . .,θz)T and a collection of n attributes

C = {C1, C2,. . .,Cn} with ω = (ω1, ω2,. . .,ωn)T matching θl 2 [0,1],
Xz

l¼1
yl ¼ 1, ωn 2

[0,1],
Xn

j¼1
oj ¼ 1. Taking into account the relationship of the attribute set C, C can be divided

into l parts P1, P2,. . .,Pl, where Pt ¼ Ct1;Ct2; � � � ;CtPt

n o
, t = (1, 2,. . .,l), Ps

T
Pt =

∅,[l
t¼1

Pt ¼ C. |Pt| represents the number in partition Pt. Assume that the DM Dh(h = 1,2,. . .,z)

evaluates his/her assessment using MNS ~nij
h ¼ ~t ijh;~iijh; ~f ij

h
� �

, which is the assessment of the
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attribute Cj regarding the alternative Ai. The decision matrix might indeed be compiled as fol-

lows:

Rh ¼ ~nij

h ih

m�n
¼

~n11
h ~n12

h � � � ~n1n
h

~n21
h ~n22

h � � � ~n2n
h

..

. ..
. . .

. ..
.

~nm1
h ~nm2

h � � � ~nmn
h

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð27Þ

To overcome this problem, the following phases of the new MAGDM technique might be

taken:

Step 1. The gathered choice matrices Rh must be normalized into standard matrices SRh by

converting the cost-type to the benefit-type.

Rh ¼ ~nij
h ¼

~nij ¼ ~uij
h; ~dij

h;~lijh
� �

~nij

� �c
¼ ~uij

h
� �

; 1 � ~dij
h

� �
; ~l ijh
� �h i

8
><

>:
ð28Þ

Step 2. Calculate the supports Sup ~nk
ij; ~n

t
ij

� �
:

Sup ~nij
k; ~nij

t
� �

¼ 1 � d ~nij
k; ~nij

t
� �

; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m; k; t ¼ 1; 2; .. ; l; k 6¼ t:ð29Þ

As Definition 7, d ~nk
ij; ~n

t
ij

� �
is the Hamming-Hausdorff distance.

Step 3. Estimate the weights sk
ij associated with the MN ~nk

ij.

Since

T ~nij
k

� �
¼
Xl

t¼1;t 6¼k

ot � Sup ~nij
k; ~nij

t
� �

; k ¼ 1; 2; . . .; lð Þ

then the weights sk
ij combined by the ~nk

ij could be collected:

sk
ij ¼

ok 1þ T ~nk
ij

� �� �

Xl

k¼1

1þ T ~nk
ij

� �� �
; k ¼ 1; 2; . . .; l:

Step 4. Aggregate each expert’s evaluation information.
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To composite the MNS ~nk
ij, use the WMNPHAM operator described in Eq (30)

~nij ¼WMNPHAMo ~n1
ij; ~n

2
ij; . . .; ~nm

ij

� �

¼

1 �
Y

1�i1<���<ix�n

1 �
Yx

j¼1

[mij2uij
1 � 1 � mij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n ;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[rij2dij
1 � rij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

;

Y

1�i1<���<ix�n

1 �
Yx

j¼1

[lij2lij
1 � lij

� �nsij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
n

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð30Þ

Step 5. Estimate the supports Sup ~nij; ~nip

� �
:

Sup ~nij; ~nip

� �
¼ 1 � d ~nij; ~nip

� �
: ð31Þ

Step 6. Estimate the weights τij
Since

T ~nij

� �
¼
Xm

p¼1;p6¼j

wpSup ~nij; ~nip

� �
p ¼ 1; 2; . . .;mð Þ;

the weights τij with the MN ~nij can show as:

ti j ¼
wj 1þ T ~nij

� �� �

Xm

j¼1

wj 1þ T ~nij

� �� � ð32Þ
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Step 7. Evaluate each alternative inside each partition Pt, using the WMNPHAM operator

described by (27), where ~nij ¼WMNPPHAMPt ~n1
i; ~n2

i; . . .; ~nz
ið Þ, i = 1, 2,. . ., m as:

WMNPPHAMjPt j ~ni1; ~ni2; . . .; ~ninð Þ

¼
1

l
�
l

t¼1

1

Cx
jPt j

�
1�i1<���<ix�jPt j

�
x

j¼1

~nij

� �ntij
� �

1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

¼

1 �
Yl

t¼1

Y

1�i1<���<ix�jPt j

1 �
Yx

j¼1

[mij2uij
1 � 1 � mij

� �ntij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
jPt j

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

1

l

;

Yl

t¼1

Y

1�i1<���<ix�jPt j

1 �
Yx

j¼1

[rij2dij
1 � rij

� �ntij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
jPt j

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

1

l

;

Yl

t¼1

Y

1�i1<���<ix�jPt j

1 �
Yx

j¼1

[lij2lij
1 � lij

� �ntij
� �

 !
1

x

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

Cx
jPt j

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

1

l

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð33Þ

Step 8. Use the Eqs. (8) and (9) to calculate the score values G ~nið Þ and accuracy values

B ~nið Þ.

Step 9. As shown by Definition 6, order the alternatives Ai and pick the most accomplished

one(s).

Illustrative example

The investment firm seeks to choose the best option from the four agricultural brands, which

are A1, A2, A3 and A4. Three characteristics are used to evaluate the four alternatives: (1)

C1(the risk index), (2) C2(the growth index), (3) C3(environmental impact index), where C1

and C2 belong to the benefit type, C3 is of the cost type with their weight is ω = (0.35, 0.25,

0.4)T. Furthermore, there are three decision makers that can make quick choices based on

their knowledge and experience. Their decisions may be written down in the form MNS by

~nh
ij ¼ ~tnhij ;

~inhij ;
~f nhij

n o
(i = 1,2,3,4, j = 1,2,3,4, h = 1,2,3) with their weight is θ = (0.3,0.5.0.2)T. The

qualities may be separated into two portions based on their characteristics P1 = {C1, C2} and

P2 = {C3}. In this situation, the decision maker can provide numerous possible values under

each characteristic for the evaluations while adhering to the primary level of “excellent.” Then
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there is the decision matrix among the decision makers Rh ¼ ~nij

h ih

m�n
could be collect as fol-

lows

R1 ¼

0:4f g; 0:1f g; 0:2f gh i 0:5f g; 0:2f g; 0:1f gh i 0:3f g; 0:1; 0:2f g; 0:4f gh i

0:7f g; 0:1; 0:2f g; 0:2f gh i 0:6f g; 0:2f g; 0:2; 0:3f gh i 0:4f g; 0:2f g; 0:3f gh i

0:4; 0:5f g; 0:1f g; 0:3f gh i 0:5f g; 0:2f g; 0:1f gh i 0:4; 0:5f g; 0:2f g; 0:2f gh i

0:6f g; 0:3f g; 0:1f gh i 0:5; 0:6f g; 0:3f g; 0:2f gh i 0:5f g; 0:1f g; 0:2f gh i

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

R2 ¼

0:6f g; 0:1f g; 0:1; 0:2f gh i 0:5f g; 0:2f g; 0:2f gh i 0:4; 0:5f g; 0:1f g; 0:3f gh i

0:5f g; 0:2f g; 0:2f gh i 0:6f g; 0:2f g; 0:1; 0:2f gh i 0:5f g; 0:3f g; 0:2f gh i

0:4; 0:5f g; 0:2f g; 0:1f gh i 0:5f g; 0:1f g; 0:3f gh i 0:5f g; 0:1f g; 0:2; 0:3f gh i

0:5f g; 0:3f g; 0:2f gh i 0:8f g; 0:2; 0:3f g; 0:2f gh i 0:5f g; 0:2f g; 0:2f gh i

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

R3 ¼

0:4; 0:5f g; 0:2f g; 0:3f gh i 0:4f g; 0:2; 0:3f g; 0:3f gh i 0:2f g; 0:2f g; 0:5f gh i

0:6f g; 0:1; 0:2f g; 0:2f gh i 0:6f g; 0:1f g; 0:2f gh i 0:5f g; 0:2f g; 0:1; 0:2f gh i

0:3; 0:4f g; 0:2f g; 0:3f gh i 0:5f g; 0:2f g; 0:3f gh i 0:5f g; 0:2; 0:3f g; 0:2f gh i

0:7f g; 0:1; 0:2f g; 0:1f gh i 0:6f g; 0:1f g; 0:2f gh i 0:4f g; 0:3f g; 0:2f gh i

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Decision-making procedure

Step 1. Normalize the decision matrix.

The normalized MN decision matrix ~Rk ¼ ~nk
ij

� �

4�3
can be calculated using Eq (28) as:

R1 ¼

0:4f g; 0:1f g; 0:2f gh i 0:5f g; 0:2f g; 0:1f gh i 0:4f g; 0:8; 0:9f g; 0:3f gh i

0:7f g; 0:1; 0:2f g; 0:2f gh i 0:6f g; 0:2f g; 0:2; 0:3f gh i 0:3f g; 0:8f g; 0:4f gh i

0:4; 0:5f g; 0:1f g; 0:3f gh i 0:5f g; 0:2f g; 0:1f gh i 0:2f g; 0:8f g; 0:4; 0:5f gh i

0:6f g; 0:3f g; 0:1f gh i 0:5; 0:6f g; 0:3f g; 0:2f gh i 0:2f g; 0:9f g; 0:5f gh i

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

R2 ¼

0:6f g; 0:1f g; 0:1; 0:2f gh i 0:5f g; 0:2f g; 0:2f gh i 0:3f g; 0:9f g; 0:4; 0:5f gh i

0:5f g; 0:2f g; 0:2f gh i 0:6f g; 0:2f g; 0:1; 0:2f gh i 0:2f g; 0:7f g; 0:5f gh i

0:4; 0:5f g; 0:2f g; 0:1f gh i 0:5f g; 0:1f g; 0:3f gh i 0:2; 0:3f g; 0:9f g; 0:5f gh i

0:5f g; 0:3f g; 0:2f gh i 0:8f g; 0:2; 0:3f g; 0:2f gh i 0:2f g; 0:8f g; 0:5f gh i

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

R3 ¼

0:4; 0:5f g; 0:2f g; 0:3f gh i 0:4f g; 0:2; 0:3f g; 0:3f gh i 0:5f g; 0:8f g; 0:2f gh i

0:6f g; 0:1; 0:2f g; 0:2f gh i 0:6f g; 0:1f g; 0:2f gh i 0:1; 0:2f g; 0:8f g; 0:5f gh i

0:3; 0:4f g; 0:2f g; 0:3f gh i 0:5f g; 0:2f g; 0:3f gh i 0:2f g; 0:7; 0:8f g; 0:5f gh i

0:7f g; 0:1; 0:2f g; 0:1f gh i 0:6f g; 0:1f g; 0:2f gh i 0:2f g; 0:7f g; 0:4f gh i

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:
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Step 2. Compute the supports degree Sup ~nk
ij; ~n

t
ij

� �
: For convenience, Sup ~nk

ij; ~n
t
ij

� �� �

4�3
can

denoted by Supkt. According to Eq (29), the Supkt (k,t = 1,2,3; k 6¼ t) can be calculated:

Sup12 ¼ Sup21 ¼

0:9167 0:9667 0:9000

0:9167 0:9667 0:9000

0:9000 0:9000 0:9333

0:9333 0:9000 0:9667

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

Sup13 ¼ Sup31 ¼

0:9167 0:8833 0:9167

0:9667 0:9667 0:9167

0:9333 0:9333 0:9667

0:9167 0:9167 0:9000

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

Sup23 ¼ Sup32 ¼

0:8667 0:9167 0:8167

0:9500 0:9500 0:9667

0:9000 0:9667 0:9333

0:8500 0:8833 0:9333

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Step 3. Estimate the weights sk
ij with ~nk

ij.

The T ~nk
ij

� �� �

4�3
can be calculated as Tk (k = 1,2,3):

T1 ¼

0:6417 0:6600 0:6333

0:6517 0:6734 0:6333

0:6367 0:6367 0:6600

0:6500 0:6333 0:6634

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

T2 ¼

0:4484 0:4734 0:6784

0:7500 0:4800 0:4633

0:4500 0:4633 0:4677

0:4500 0:4467 0:4767

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

T3 ¼

0:7084 0:7233 0:6834

0:7650 0:7600 0:7584

0:7300 0:7633 0:7567

0:7000 0:7167 0:7367

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:
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The weights sk
ij i; j ¼ 1; 2; 3; 4; k ¼ 1; 2; . . .; lð Þ can be formed by MN ~nk

ij using Eq (31).

sk
ij

� �

4�3
are formed by σk (k = 1,2,3) as follows:

s1 ¼

0:3160 0:3153 0:2941

0:2875 0:3149 0:3114

0:3143 0:3117 0:3147

0:3173 0:3148 0:3149

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

s2 ¼

0:4647 0:4665 0:5038

0:5077 0:4642 0:4650

0:4641 0:4644 0:4634

0:4647 0:4647 0:4659

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

s3 ¼

0:2193 0:2182 0:2021

0:2048 0:2208 0:2235

0:2215 0:2239 0:2220

0:2179 0:2206 0:2192

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

Step 4. Combine the evaluation information of every expert.

The collective multivalued neutrosophic decision matrix ~R ¼ ~nij

� �

n�m
can be computed as:

~R ¼

0:4426; 0:4759f g; 0:1566f g; 0:2333; 0:2572f gh i 0:4507f g; 0:2230; 0:2577f g; 0:2157f gh i 0:3734f g; 0:8502; 0:8810f g; 0:3249; 0:3578f gh i

0:5727f g; 0:1535; 0:1928; 0:1924; 0:2355f g; 0:2355f gh i 0:5810f g; 0:1804f g; 0:1990; 0:2221; 0:2366; 0:2583f gh i 0:1858; 0:2231f g; 0:7765f g; 0:4830f gh i

0:3544; 0:3868; 0:3831; 0:4168; 0:3857; 0:4189; 0:4171; 0:4512f g; 0:1829f g; 0:2737f gh i 0:4841f g; 0:1987f g; 0:2466f gh i 0:1934; 0:2236f g; 0:8228; 0:8466f g; 0:4829; 0:5160f gh i

0:5818f g; 0:2420; 0:2852f g; 0:1450f gh i 0:5948; 0:6328f g; 0:2140; 0:2415f g; 0:2222f gh i 0:1931f g; 0:8200f g; 0:4847f gh i

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Step 5. Retrieve the supports Sup ~nij; ~nip

� �
:

Sup ~nij; ~nip

� �
i ¼ 1; 2; . . .; n; j; p ¼ 1; 2; . . .;m; j 6¼ pð Þ could be retrieved using Eq (31) as

follows:

Sup ~n11; ~n12ð Þ ¼ Sup ~n12; ~n11ð Þ ¼ 0:9567;

Sup ~n11; ~n13ð Þ ¼ Sup ~n13; ~n11ð Þ ¼ 0:7030;

Sup ~n12; ~n13ð Þ ¼ Sup ~n13; ~n12ð Þ ¼ 0:7239;

Sup ~n21; ~n22ð Þ ¼ Sup ~n22; ~n21ð Þ ¼ 0:9737;

Sup ~n21; ~n23ð Þ ¼ Sup ~n23; ~n21ð Þ ¼ 0:5106;

Sup ~n22; ~n23ð Þ ¼ Sup ~n23; ~n22ð Þ ¼ 0:5330;

Sup ~n31; ~n32ð Þ ¼ Sup ~n32; ~n31ð Þ ¼ 0:9705;

Sup ~n31; ~n33ð Þ ¼ Sup ~n33; ~n31ð Þ ¼ 0:6427;

Sup ~n32; ~n33ð Þ ¼ Sup ~n33; ~n32ð Þ ¼ 0:6112;

Sup ~n41; ~n42ð Þ ¼ Sup ~n42; ~n41ð Þ ¼ 0:9517;

Sup ~n41; ~n43ð Þ ¼ Sup ~n43; ~n41ð Þ ¼ 0:5717;

Sup ~n42; ~n43ð Þ ¼ Sup ~n43; ~n42ð Þ ¼ 0:5749:

Step 6. Compute the weights τij with MNS ~nij:

PLOS ONE Multivalued neutrosophic power partitioned Hamy mean operators

PLOS ONE | https://doi.org/10.1371/journal.pone.0281734 February 15, 2023 18 / 23

https://doi.org/10.1371/journal.pone.0281734


The weighted support T ~nij

� �� �

4�3
of the MNS ~nij using Eq (32), by the other MNS

~nip p ¼ 1; 2; . . .;m and p 6¼ jð Þ can be computed.

T ~nij

� �� �

4�3
¼

0:5204 0:6244 0:4270

0:4477 0:5540 0:3120

0:4997 0:5842 0:3777

0:4666 0:5631 0:3438

0

B
B
B
B
@

1

C
C
C
C
A
:

So the weights τij (j = 1,2,. . .,m) can be computed.

tij

� �

4�3
¼

0:3526 0:2691 0:3783

0:3568 0:2736 0:3696

0:3566 0:2691 0:3744

0:3561 0:2711 0:3729

0

B
B
B
B
@

1

C
C
C
C
A
:

Step 7. Evaluate the information within each partition of attributes.

This step can estimate the collective evaluation values of each alternate within Pt by (20),

which show in Table 1.

The value ~ni of the alternative αi can be calculated by WMNPPHAM operator in Table 2:

Step 8. Use the Eqs. (8) and (9) to calculate the score values.

Si can be calculated by Definition 5 as:

S1 ¼ 0:5738; S2 ¼ 0:5508; S3 ¼ 0:5253; S4 ¼ 0:5443:

Step 9. Order all the alternatives.

The results in Step 4, we can get S1 > S2 >S4 >S3. So, the final rank of all the alternatives

could be shown as A1� A2� A4� A3.

Table 1. The evaluation values of each alternate within partition of attributes.

P1 P2

A1 {{0.1347, 0.1425},{0.7146, 0.7265, 0.7318, 0.7437},{0.5236, 0.5392,0.5355, 0.5510}} {{0.1621},{0.9405, 0.9532},{0.6536,

0.6779}}

A2 {{0.1437, 0.1548},{0.6573, 0.6770, 0.6768, 0.6968}, {0.5869, 0.5988, 0.6060, 0.6164}} {{0.0732,0.0891},{0.9107},

{0.7642}}

A3 {{0.0815,0.0880,0.0941,0.0866,0.0934,0.0928,0.0999,0.0871,0.0939,0.0932,0.1003,0.0928,0.0999,0.0992,0.1065},{0.7023, 0.7115},

{0.6287, 0.6425}}

{{0.0773,0.0904},{0.9296, 0.9396},

{0.7614, 0.7806}}

A4 {{0.1509,0.1607},{0.7336, 0.7459, 0.7507, 0.7621},{0.5550}} {{0.0769},{0.9287},{0.7633}}

https://doi.org/10.1371/journal.pone.0281734.t001

Table 2. The comprehensive value of the alternative.

P1

A1 {{0.1485,0.1523},{0.8198,0.8322,0.8296,0.8420},{0.5850,0.6046,0.5916,0.6111}}

A2 {{0.1091, 0.1225},{0.7737, 0.7852, 0.7851, 0.7966},{0.6697,0.6765,0.6805,0.6805}}

A3 {{0.0794, 0.0892, 0.0823, 0.0923, 0.0820, 0.0919, 0.0851, 0.0951,0.0822,0.0922,0.0853,0.953,0.0851,0.0952,0.0883,0.0985},{0.8080, 0.8176},{0.6916, 0.7082}}

A4 {{0.1147, 0.1198},{0.8254, 0.8323, 0.8350,0.8413},{0.6509}}

https://doi.org/10.1371/journal.pone.0281734.t002
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Influence of the parameter on the final result

The changing value of parameter x in the MNWHAM operator can be taken to demonstrate

the effects on the ranking results in Table 3.

Comparison analysis

The efficacy and practicality of the suggested MAGDM technique by WMNPPHAM operators

must be compared and verified, thus we perform a comparative analysis using the same illus-

trative case. The analysis might be made from the following aspects: techniques utilizing MNS

with other operators and ways using the same operators with different discrete forms of neu-

trosophic numbers. Then these different ranking results could be shown as α1� α4� α2� α3

[43]. Clearly, the ideal choice is α1, whereas the worst alternative is α3.

We summarize the reasons for variances in the final rankings of all the examined

approaches and the suggested methodology in Table 4. Not only can our approach consider

interrelationships between any two qualities, numerous arguments, and membership and non-

membership, but it also has beneficial flexibility to represent preference and capacity to

describe uncertainty. Furthermore, our technique may partition the attributes into discrete

portions that include both the interdependence and the independence of the attributes. So we

may infer that WMNPPHAM is more practical and efficient.

Conclusion

In this study, we propose the WMNPHAM and WMNPPHAM operators, which extend the

Hamy mean and Power aggregation operator to the MNS. In addition, we describe the desir-

able qualities, create the score function, and use it to rank the choices. After that, based on the

WMNPPHAM operator, we provide detailed procedures for solving MAGDM issues using

multi-valued neutrosophic information. Furthermore, we compare the efficacy and practicality

of the created technique to current methods.

Therefore, for addressing complex decision-making situations, these proposed novel multi-

valued neutrosophic aggregation operators can aggregate fuzzy information and partitioned

parameters meantime, which can be used as a practical tool to solve the MADM challenges

more efficiently and effectively. In the future, further research can expand them to other

Table 3. Ranking results for different parameter.

S1 S2 S3 S4 Ordering

x = 1 0.5949 0.5719 0.5512 0.5575 A1� A2� A4 � A3

x = 2 0.5738 0.5508 0.5253 0.5443 A1� A2� A4 � A3

x = 3 0.5655 0.5445 0.5184 0.5406 A1� A2� A4 � A3

https://doi.org/10.1371/journal.pone.0281734.t003

Table 4. The comparison results of the different methods.

Aggregation

operators

Interrelationship between

arguments

Interactions among membership and

nonmembership

The effect of model uncertainty is

greater.

Partition

Algebraic [44] No No No No

BM [45] No No Yes No

HM [46] No Yes No Yes

MSM [47] Yes Yes No No

WMNPPHAM Yes Yes Yes Yes

https://doi.org/10.1371/journal.pone.0281734.t004
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aspects of MADM or MAGDM, such as clustering algorithms or consistency analysis. Mean-

while, other fuzzy sets can be combined to deal with the practical problems, such as q-rung

orthopair fuzzy 2-tuple linguistic sets [48], interval-valued intuitionistic fuzzy hypersoft set

[49], and so on.

Author Contributions

Conceptualization: Muwen Wang.

Data curation: Muwen Wang, Tonghui Li.

Formal analysis: Muwen Wang.

Methodology: Muwen Wang, Yuan Tian.

Resources: Tonghui Li, Yuan Tian.

Software: Tonghui Li, Yuan Tian.

Supervision: Kecheng Zhang.

Visualization: Yuan Tian.

Writing – original draft: Muwen Wang.

Writing – review & editing: Kecheng Zhang.

References
1. Broumi S. Generalized Neutrosophic Soft Set. IJCSEIT. 2013; 3: 17–30. https://doi.org/10/gm8hzf

2. Akram M, Alsulami S, Khan A, Karaaslan F. Multi-Criteria Group Decision-Making Using Spherical

Fuzzy Prioritized Weighted Aggregation Operators: IJCIS. 2020; 13: 1429. https://doi.org/10/gm8hf7

3. Wang M, Zhang Y, Tian Y, Zhang K. An integrated rough-fuzzy WINGS-ISM method with an application

in ASSCM. Expert Systems with Applications. 2023; 212: 118843. https://doi.org/10.1016/j.eswa.2022.

118843 PMID: 36157790

4. Mishra SDSMS. Multi-attribute group decision-making (MAGDM) for supplier selection using fuzzy lin-

guistic modelling integrated with VIKOR method. International Journal of Services and Operations Man-

agement. 2012; 67–89.

5. Ali G, Alolaiyan H, Pamučar D, Asif M, Lateef N. A Novel MADM Framework under q-Rung Orthopair

Fuzzy Bipolar Soft Sets. Mathematics. 2021; 9: 2163. https://doi.org/10/gngvp3

6. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 87–96.

7. Atanassov KT. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1989; 37–45.

8. Atanassov KT. My Personal View on Intuitionistic Fuzzy Sets Theory. In: Bustince H, Herrera F, Mon-

tero J, editors. Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Berlin, Hei-

delberg: Springer Berlin Heidelberg; 2008. pp. 23–43. https://doi.org/10.1007/978-3-540-73723-0_2

9. Smarandache F. Neutrosophic set—a generalization of the intuitionistic fuzzy set. 2006 IEEE Interna-

tional Conference on Granular Computing. Atlanta, GA, USA: IEEE; 2006. pp. 38–42. https://doi.org/

10/bnf7td

10. Peng H, Zhang H, Wang J. Probability multi-valued neutrosophic sets and its application in multi-criteria

group decision-making problems. Neural Comput & Applic. 2018; 30: 563–583. https://doi.org/10/gdrzft

11. Deli I, Broumi S, Smarandache F. ON NEUTROSOPHIC REFINED SETS AND THEIR APPLICA-

TIONS IN MEDICAL DIAGNOSIS. viXra. 2015.

12. Saqlain M, Jafar N, Moin S, Saeed M, Broumi S. Single and Multi-valued Neutrosophic Hypersoft set

and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Sets. 2020; 32: 14.

13. Deli I, Broumi S, Ali M. Neutrosophic Soft Multi-Set Theory and Its Decision Making. Neutrosophic Sets

and Systems. 2014; 5: 65–76.

14. Chai JS, Selvachandran G, Smarandache F, Gerogiannis VC, Son LH, Bui Q-T, et al. New similarity

measures for single-valued neutrosophic sets with applications in pattern recognition and medical diag-

nosis problems. Complex Intell Syst. 2021; 7: 703–723. https://doi.org/10/gm8hdc

PLOS ONE Multivalued neutrosophic power partitioned Hamy mean operators

PLOS ONE | https://doi.org/10.1371/journal.pone.0281734 February 15, 2023 21 / 23

https://doi.org/10/gm8hzf
https://doi.org/10/gm8hf7
https://doi.org/10.1016/j.eswa.2022.118843
https://doi.org/10.1016/j.eswa.2022.118843
http://www.ncbi.nlm.nih.gov/pubmed/36157790
https://doi.org/10/gngvp3
https://doi.org/10.1007/978-3-540-73723-0%5F2
https://doi.org/10/bnf7td
https://doi.org/10/bnf7td
https://doi.org/10/gdrzft
https://doi.org/10/gm8hdc
https://doi.org/10.1371/journal.pone.0281734


15. Broumi S, Witczak T. Heptapartitioned neutrosophic soft set. International Journal of Neutrosophic Sci-

ence. 2022.

16. Martin N, Smarandache F, Broumi S. PROMTHEE Plithogenic Pythagorean Hypergraphic Approach in

Smart Materials Selection. International Journal of Neutrosophic Science. 2021.

17. Broumi S, Smarandache F, Deli I. N-Valued Interval Neutrosophic Sets and Their Application in Medical

Diagnosis. viXra. 2015.

18. Du Z, Yu S, Xu X. Managing noncooperative behaviors in large-scale group decision-making: Integra-

tion of independent and supervised consensus-reaching models. Information Sciences. 2020; 531:

119–138. https://doi.org/10/gm8ht2

19. Broumi S, Deli I. Correlation Measure for Neutrosophic Refined Sets and its application in Medical Diag-

nosis. viXra. 2013.

20. Abdullah L, Goh P. Decision making method based on Pythagorean fuzzy sets and its application to

solid waste management. Complex Intell Syst. 2019; 5: 185–198. https://doi.org/10/gm8h97

21. Aydemir SB, Gunduz SY. A novel approach to multi-attribute group decision making based on power

neutrality aggregation operator for q -rung orthopair fuzzy sets. Int J Intell Syst. 2021; 36: 1454–1481.

https://doi.org/10/gm8h22

22. Liu P, Chen S-M, Liu J. Multiple attribute group decision making based on intuitionistic fuzzy interaction

partitioned Bonferroni mean operators. Information Sciences. 2017; 411: 98–121. https://doi.org/10/

gm8hgs

23. Liu P, Wang Y. Multiple attribute decision making based on q-rung orthopair fuzzy generalized Maclau-

rin symmetic mean operators. Information Sciences. 2020; 518: 181–210. https://doi.org/10/gm8ht6

24. Sindhu MS, Rashid T, Kashif A. Multiple criteria decision making based on Hamy mean operators under

the environment of spherical fuzzy sets. IFS. 2021; 41: 273–298. https://doi.org/10/gm8hf8

25. Wei G, Wang J, Wei C, Wei Y, Zhang Y. Dual Hesitant Pythagorean Fuzzy Hamy Mean Operators in

Multiple Attribute Decision Making. IEEE Access. 2019; 7: 86697–86716. https://doi.org/10/gmt77c

26. Xing Y, Zhang R, Wang J, Bai K, Xue J. A new multi-criteria group decision-making approach based on

q-rung orthopair fuzzy interaction Hamy mean operators. Neural Comput & Applic. 2020; 32: 7465–

7488. https://doi.org/10/gm8hdd

27. Yu S-M, Zhang H, Wang J. Hesitant Fuzzy Linguistic Maclaurin Symmetric Mean Operators and their

Applications to Multi-Criteria Decision-Making Problem: MACLAURIN SYMMETRIC MEAN OPERA-

TORS. Int J Intell Syst. 2018; 33: 953–982. https://doi.org/10/gdbqjq

28. Silambarasan I, Udhayakumar R, Smarandache F, Broumi S. Some Algebraic structures of Neutro-

sophic fuzzy sets. International Journal of Neutrosophic Science. 2022.

29. Talebi AA, Ghassemi M, Rashmanlou H, Broumi S. Novel Properties of Edge Irregular Single Valued

Neutrosophic Graphs. 2021.

30. Chen T-Y. A novel PROMETHEE-based method using a Pythagorean fuzzy combinative distance-

based precedence approach to multiple criteria decision making. Applied Soft Computing. 2019; 82:

105560. https://doi.org/10/gg2fht

31. Lolli F, Balugani E, Ishizaka A, Gamberini R, Butturi MA, Marinello S, et al. On the elicitation of criteria

weights in PROMETHEE-based ranking methods for a mobile application. Expert Systems with Appli-

cations. 2019; 120: 217–227. https://doi.org/10/gm8h5z

32. Alali F, Tolga A. Portfolio allocation with the TODIM method. EXPERT SYSTEMS WITH APPLICA-

TIONS. 2019; 124: 341–348. https://doi.org/10.1016/j.eswa.2019.01.054

33. Tolga A, Parlak I, Castillo O. Finite-interval-valued Type-2 Gaussian fuzzy numbers applied to fuzzy

TODIM in a healthcare problem. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE.

2020; 87. https://doi.org/10.1016/j.engappai.2019.103352

34. Ajay D, Broumi S, Aldring J. An MCDM Method under Neutrosophic Cubic Fuzzy Sets with Geometric

Bonferroni Mean Operator. Neutrosophic Sets and Systems. 2020; 32: 13.

35. Liu P, Khan Q, Mahmood T. Application of Interval Neutrosophic Power Hamy Mean Operators in

MAGDM. Informatica. 2019; 30: 293–325. https://doi.org/10/gm8h75

36. Zhu X, Bai K, Wang J, Zhang R, Xing Y. Pythagorean fuzzy interaction power partitioned Bonferroni

means with applications to multi-attribute group decision making. IFS. 2019; 36: 3423–3438. https://doi.

org/10/gm8h2j

37. Liu P, Chen S-M, Wang Y. Multiattribute group decision making based on intuitionistic fuzzy partitioned

Maclaurin symmetric mean operators. Information Sciences. 2020; 512: 830–854. https://doi.org/10/

gm8hgv
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