n-FOLD FILTERS IN SMARANDACHE RESIDUATED LATTICES, PART (II)

Somayeh Motamed¹, Mahsa Sadeghi KosarKhizi²

In this paper we introduce the notions of n-fold BL-Smarandache n-fold BL-Smarandache fantastic filter and n-fold BL-Smarandache easy filter in Smarandache residuated lattices and study the relations among them. And we also introduce the notions of n-fold Smarandache n-fold Smarandache fantastic BL-residuated lattice and n-fold Smarandache easy BL-residuated lattice and investigate its properties.

Keywords: Smarandache residuated lattice, n-fold Smarandache easy filter, n-fold Smarandache fantastic filter, n-fold Smarandache easy residuated lattice, n-fold Smarandache fantastic residuated lattice.

MSC2010: 3B47, 03G25, 06D99.

1. Introduction and Preliminaries

BL-algebras (basic logic algebras) are the algebraic structures for Hájek basic logic [5], in order to investigate many valued logic by algebraic means. Residuated lattices play an important role in the study of fuzzy logic and filters are basic concepts in residuated lattices and other algebraic structures.

A Smarandache structure on a set L means a weak structure W on L such that there exists a proper subset B of L which is embedded with a strong structure S. In [12], Vasantha Kandasamy studied the concept of Smarandache groupoids, subgroupoids, ideal of groupoids and strong Bol groupoids and obtained many interesting results about them. It will be very interesting to study the Smarandache structure in these algebraic structures. A BL-algebra is a weaker structure than residuated lattice, then we can consider in any residuated lattice a weaker structure as BL-algebra. Smarandache BL-algebra and Smarandache (implicative) ideals in BL-algebra are defined in [?] and the concepts of bi-Smarandache BL-algebra, bi-weak Smarandache BL-algebra, bi − Q-Smarandache ideal and bi − Q-Smarandache implicative filter are defined in [1]. The concept of Smarandache residuated lattice, Smarandache (positive) implicative filters and Smarandache fantastic filters defined in [2]. In [6, 10] the authors defined the notion of n-fold (positive) implicative filters, n-fold fantastic filters, n-fold obstinate filters in BL-algebras and studied the relation among many type of n-fold filters in BL-algebra. The aim of this paper is to extend this research to Smarandache residuated lattices.

[4] A residuated lattice is an algebra L = (L, ∧, ∨, ⊕, →, 0, 1) of type (2, 2, 2, 2, 0, 0) equipped with an order ≤ satisfying the following:

(LR₁) (L, ∧, ∨, 0, 1) is a bounded lattice,
(LR₂) (L, ⊕, 1) is a commutative ordered monoid,
(LR₃) ⊕ and → form an adjoint pair i.e, c ≤ a → b if and only if a ⊕ c ≤ b for all a, b, c ∈ L.

¹Department of Mathematics, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran, e-mail: somayeh.motamed@iauba.ac.ir
²Department of Mathematics, Shahid Bahonar University of Kerman, Iran
A BL-algebra is a residuated lattice L if satisfying the following identity, for all $a, b \in L$:

\[(BL_1) \quad (a \to b) \lor (b \to a) = 1,\]
\[(BL_2) \quad a \wedge b = a \circ (a \to b).\]

Theorem 1.1. [4, 7, 8, 9] Let L be a residuated lattice. Then the following properties hold, for all $x, y, z \in L$:

1. (Lr_1) $1 \to x = x, \; x \to x = 1$,
2. (Lr_2) $x \to y \leq (z \to x) \to (z \to y) \leq z \to (x \to y),$
3. (Lr_3) $x \to y \leq (y \to z) \to (x \to z)$ and $(x \to y) \circ (y \to z) \leq x \to z,$
4. (Lr_4) $x \leq y \iff x \to y = 1, \; x \leq y \to x$,
5. (Lr_5) $x \to (y \to z) = y \to (x \to z) = (x \circ y) \to z$,
6. (Lr_6) $x \circ (x \to y) \leq y, x \leq y \to (x \circ y)$ and $y \leq (y \to x) \to x$,
7. (Lr_7) If $x \leq y$, then $y \to z \leq x \to z, \; z \to x \leq z \to y$ and $y^* \leq x^*,$
8. (Lr_8) $x \leq y$ and $z \leq w$ then $x \circ z \leq y \circ w,$
9. (Lr_9) $x \leq x^{**}, \; x^{***} = x^*,$
10. $(Lr_{10}) \quad x^* \circ y^* \leq (x \circ y)^* \text{ (so, } (x^*)^n \leq (x^n)^* \text{ for every } n \geq 1),$\hspace{1cm}
11. $(Lr_{11}) \quad x^{**} \circ y^{**} \leq (x \circ y)^{**} \text{ (so, } (x^{**})^n \leq (x^n)^{**} \text{ for every } n \geq 1)$.

The following definitions and theorems are stated from [2].

A Smarandache BL-residuated lattice is a residuated lattice L in which there exists a proper subset B of L such that $0, 1 \in B, \; |B| > 2$ and B is a BL-algebra under the operations of L.

From now on $L_B = (L, \wedge, \vee, \circ, \to, 0, 1)$ is a Smarandache BL-residuated lattice and $B = (B, \wedge, \vee, \circ, \to, 0, 1)$ is a BL-algebra unless otherwise specified. A nonempty subset F of L_B is called a BL-Smarandache deductive system of L_B if $1 \in F$ and if $x \in F, \; y \in B, \; x \to y \in F$ imply $y \in F$. A nonempty subset F of L_B is called a BL-Smarandache filter of L_B if $x, y \in F$ imply $x \circ y \in F$ and if $x \in F, \; y \in B$ and $x \leq y$ imply $y \in F$.

Theorem 1.2. (i) Let F be a BL-Smarandache filter of L_B, then F is a BL-Smarandache deductive system of L_B.
(ii) Let F be a BL-Smarandache deductive system of L_B. If $F \subseteq B$, then F is a BL-Smarandache filter of L_B.

A filter F of a residuated lattice L is called an easy filter if $x^{**} \to (y \to z) \in F$ and $x^{**} \to y \in F$ imply $x^{**} \to z \in F$, for all $x, y, z \in L$, [3].

Definition 1.1. [11] Let F be a subset of Smarandache BL-residuated lattice L_B and $1 \in F$.

1. F is called an n-fold BL-Smarandache positive implicatve filter of L_B if $x^n \to (y \to z) \in F$ and $x^n \to y \in F$, then $x^n \to z \in F$, for all $x, y, z \in B$.
2. F is called an n-fold BL-Smarandache positive implicatve filter of L_B if $x \in F$ and $x \to (y^n \to z) \to y \in F$ then $y \in F$, for all $y, z \in B$.

Definition 1.2. [11] Let L_B be a Smarandache BL-residuated lattice.

1. L_B is called an n-fold Smarandache positive implicatve BL-residuated lattice if $x^{n+1} = x^n$ for all $x \in B$.
2. L_B is called an n-fold Smarandache implicatve BL-residuated lattice if $(x^n)^* \to x = x$, for each $x \in B$.

Theorem 1.3. [11] Let F be a BL-Smarandache deductive system of L_B. Then F is an n-fold BL-Smarandache positive implicatve filter of L_B if and only if $x^n \to x^{2n} \in F$, for all $x \in B$ and $n \in N$.
Theorem 1.4. [11] Let F be a B_L-Smarandache deductive system of L_B. Then L_B is an n-fold Smarandache positive implicative B_L-residuated lattice if and only if every B_L-Smarandache deductive system of L_B is an n-fold B_L-Smarandache positive implicative filter of L_B.

Theorem 1.5. [11] Let F be a B_L-Smarandache deductive system of L_B. Then F is an n-fold B_L-Smarandache implicative filter if and only if $(x^n \to y) \to x \in F$ implies $x \in F$, for all $x, y \in B$.

Theorem 1.6. [11] L_B is an n-fold Smarandache implicative B_L-residuated lattice if and only if every B_L-Smarandache deductive system F of L_B is an n-fold B_L-Smarandache implicative filter of L_B.

Theorem 1.7. [11] Let every $\text{Smarandache deductive system be a Smarandache filter. Then}$ every $\text{n-fold Smarandache implicative filter is n-fold Smarandache positive implicative filter.}$

Now, unless mentioned otherwise, $n \geq 1$ will be an integer.

2. n-Fold B_L-Smarandache Fantastic Filters

Definition 2.1. A subset F of L_B is called an n-fold Smarandache fantastic filter of L_B related to B (or briefly n-fold B_L-Smarandache fantastic filter of L_B) if $1 \in F$ and $z, z \to (y \to x) \in F$ imply $(x^n \to y) \to y \to x \in F$, for all $x, y \in B$.

Example 2.1. Let $L = \{0, a, b, c, d, 1\}$ be a residuated lattice such that $0 < a < c < d < 1$ and $0 < b < c < d < 1$. We define

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>1</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

We can see that $L = (L, \wedge, \vee, \circ, \to, 0, 1)$ is a residuated lattice, in which $B = \{0, a, c, 1\}$ is a B_L-algebra which properly contained in L. Then L is a $\text{Smarandache } B_L\text{-residuated lattice.}$

$F = \{d, 1\}$ is an n-fold B_L-Smarandache fantastic filter of L_B, for $n \geq 2$, while it is not 1-fold B_L-Smarandache fantastic filter. Since $a, 0 \in B$ and $d, d \to (0 \to a) = 1 \in F$ but $(a \to 0) \to 0 \to a = c \notin F$.

Theorem 2.1. Every n-fold B_L-Smarandache fantastic filter of L_B is a B_L-Smarandache deductive system of L_B.

Proof. Let F be an n-fold B_L-Smarandache fantastic filter and $y, y \to x \in F$. We have $y \to x = y \to (1 \to x) \in F$. Then by Definition 2.1 we get $(x^n \to 1) \to x \in F$, i.e. $x \in F$. □

Theorem 2.2. Let F be a B_L-Smarandache deductive system of L_B. Then F is an n-fold B_L-Smarandache fantastic filter if and only if $y \to x \in F$ implies $(x^n \to y) \to y \to x \in F$, for all $x, y \in B$.

Proof. The proof by the Definition 2.1, is clear. □

Proposition 2.1. Any n-fold B_L-Smarandache fantastic filter is an $(n+1)$-fold B_L-Smarandache fantastic filter.
Proposition 2.2. n-fold Smarandache implicative filters are n-fold Smarandache fantastic filters.

Proof. Assume that F is an n-fold B_L-Smarandache implicative filter. Let $y \to x \in F$, where $x, y \in B$. By Theorem 1.1, we have $x \leq (((x^n \to y) \to y) \to y)$. Then $x^n \leq (((x^n \to y) \to y) \to y)$, hence $(x^n \to y) \geq (((x^n \to y) \to y) \to y)$. By (I) we get $y \to x \leq (((x^n \to y) \to y) \to y)$. Then by (I) we get $((x^n \to y) \to y) \leq y \to x$. Therefore $((x^n \to y) \to y) \leq y \to x$. Hence $(x^n \to y) \to y \leq y \to x$. By Theorem 1.1, we get $(x^n \to y) \to y \leq y \to x$. Therefore $(x^n \to y) \to y$ is an n-fold B_L-Smarandache fantastic filter.

Example 2.2. Let $L = \{0, a, b, 1\}$, where $0 < a < b < 1$. Define \odot and \to as follows:

\[
\begin{array}{c|cccc}
\odot & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & a \\
b & 0 & a & b & b \\
1 & 0 & a & b & 1 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\to & 0 & a & b & 1 \\
\hline
0 & 1 & 1 & 1 & 1 \\
a & a & 1 & 1 & 1 \\
b & 0 & a & 1 & 1 \\
1 & 0 & a & b & 1 \\
\end{array}
\]

Then $(L, \wedge, \vee, \odot, \to, 0, 1)$ is a residuated lattice and $B = \{0, a, 1\}$ is a BL-algebra, which properly contained in L. Then L is a Smarandache B_L-residuated lattice. $F = \{1\}$ is an n-fold B_L-Smarandache fantastic filter of L_B, while it is not 1-fold B_L-Smarandache implicative filter. Since $(a \to 0) \to a \in F$ but $a \not\in F$.

Theorem 2.3. Let every B_L-Smarandache deductive system of L_B be a B_L-Smarandache filter of L_B and F be a B_L-Smarandache deductive system of L_B. Then the following statements are equivalent:

(i) F is an n-fold B_L-Smarandache fantastic filter and n-fold B_L-Smarandache positive implicative filter of L_B.

(ii) F is an n-fold B_L-Smarandache implicative filter of L_B.

Proof. (i) \Rightarrow (ii) Let $x, y \in B$ such that $(x^n \to y) \to x \in F$. Since F is an n-fold B_L-Smarandache fantastic filter, by the fact that $(x^n \to y) \to x \in F$, we have $(x^n \to (x^n \to y)) \to (x^n \to y) \to x \in F$. By Theorem 1.1 we get

\[
x^n \to x^{2n} \leq (x^n \to y) \to (x^n \to y) = ((x^n \odot x^n) \to y) \to (x^n \to y) = (x^n \to (x^n \to y)) \to (x^n \to y).
\]

Hence $(x^n \to x^{2n}) \to x \geq ((x^n \to (x^n \to y)) \to (x^n \to y)) \to x$. Since F is a B_L-Smarandache filter, by the fact that $(x^n \to (x^n \to y)) \to (x^n \to y) \to x \in F$, we have $(x^n \to x^{2n}) \to x \in F$. Since F is an n-fold B_L-Smarandache positive implicative filter,
by Theorem 1.3, we get \(x^n \to x^{2n} \in F \) and so \(x \in F \). By Theorem 1.5 \(F \) is an \(n \)-fold \(B_L \)-Smarandache implicative filter.

(ii) \(\Rightarrow \) (i) By Theorem 1.7 and Proposition 2.2, the proof is clear.

\[\square \]

Definition 2.2. \(L_B \) is said to be \(n \)-fold Smarandache fantastic \(B_L \)-residuated lattice if for all \(x, y \in B \), \(y \to x = ((x^n \to y) \to y) \to x \).

Example 2.3. (i) Let \(L = \{0, a, b, c, d \} \) be a residuated lattice such that \(0 < b < a < 1 \) and \(0 < d < a, c < 1 \). We define

<table>
<thead>
<tr>
<th>(\odot)</th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>0</th>
<th>(\to)</th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>0</td>
<td>(\to)</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>d</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>0</td>
<td>c</td>
<td>d</td>
<td>0</td>
<td>c</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>d</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Then \((L, \land, V, \odot, \to, 0, 1) \) is a residuated lattice, in which \(B = \{0, b, c, 1\} \) is a \(BL \)-algebra which properly contained in \(L \). Then \(L \) is a Smarandache \(B_L \)-residuated lattice. \(L_B \) is an \(n \)-fold Smarandache fantastic \(B_L \)-residuated lattice.

(ii) In Example 2.1, \(L_B \) is not a \(1 \)-fold Smarandache fantastic \(B_L \)-residuated lattice. Since \((a \to 0) \to a \neq 0 \to a\).

Proposition 2.3. \(L_B \) is an \(n \)-fold Smarandache fantastic \(B_L \)-residuated lattice if and only if the inequality \((x^n \to y) \to y \leq (y \to x) \to x \) holds for all \(x, y \in B \).

Proof. Assume that \(L_B \) is an \(n \)-fold Smarandache fantastic \(B_L \)-residuated lattice. Let \(x, y \in B \). We have

\(((x^n \to y) \to y) \to ((y \to x) \to x) = (y \to x) \to (((x^n \to y) \to y) \to x) \).

By hypothesis \(y \to x = ((x^n \to y) \to y) \to x \). Hence \((y \to x) \to (((x^n \to y) \to y) \to x) = 1 \).

Then we get \(((x^n \to y) \to y) \to ((y \to x) \to x) = 1 \) or equivalently \(((x^n \to y) \to y) \leq ((y \to x) \to x) \).

Conversely, suppose that the inequality \((x^n \to y) \to y \leq (y \to x) \to x \) holds. Then \((y \to x) \to (((x^n \to y) \to y) \to x) = (y \to x) \to (((x^n \to y) \to y) \to x) \), (I). Since \((x^n \to y) \to y \leq (y \to x) \to x \), we get

\(((x^n \to y) \to y) \to ((x^n \to y) \to y) \leq ((x^n \to y) \to y) \to ((y \to x) \to x) \), that is

\(((x^n \to y) \to y) \to ((y \to x) \to x) = 1 \). Then \((y \to x) \to ((x^n \to y) \to y) \to x) = 1 \).

It follows that \((y \to x) \leq ((x^n \to y) \to y) \to x \). Since \(y \leq (x^n \to y) \to y \), we also get \((y \to x) \geq ((x^n \to y) \to y) \to x \). Therefore we obtain \((y \to x) = ((x^n \to y) \to y) \to x \). Hence \(L_B \) is an \(n \)-fold Smarandache fantastic \(B_L \)-residuated lattice. \(\square \)

Proposition 2.4. The following conditions are equivalent:

(i) \(L_B \) is an \(n \)-fold Smarandache fantastic \(B_L \)-residuated lattice.

(ii) Every \(B_L \)-Smarandache deductive system of \(L_B \) is an \(n \)-fold \(B_L \)-Smarandache fantastic filter of \(L_B \).

(iii) \((x^n \to y) \to y) \to ((y \to x) \to x) \in F \), for every \(B_L \)-Smarandache deductive system \(F \) of \(L_B \).

(iv) \(\{1\} \) is an \(n \)-fold \(B_L \)-Smarandache fantastic filter of \(L_B \).

Proof. (i) \(\Rightarrow \) (ii) Assume that \(\{1\} \) is an \(n \)-fold \(B_L \)-Smarandache fantastic filter. Let \(x, y \in B \) and \(t = (y \to x) \to x \). By Theorem 1.1, \(y \leq t \). So \(y \to t = 1 \) and by the hypothesis, we
have \(((t^n \rightarrow y) \rightarrow y) \rightarrow t = 1\), that is \((t^n \rightarrow y) \rightarrow y \leq t\), (I). On the other hand, \(x \leq t\) implies \(x^n \leq t^n\), hence \((x^n \rightarrow y) \rightarrow y \leq (t^n \rightarrow y) \rightarrow y\). Then by (I) it follows that \((x^n \rightarrow y) \rightarrow y \leq t = (y \rightarrow x) \rightarrow x\). Hence by Proposition 2.3, \(L_B\) is an \(n\)-fold Smarandache fantastic \(B_L\)-residuated lattice.

(i) \(\Rightarrow\) (iii) By Proposition 2.3, \((x^n \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) = 1 \in F\), for every \(B_L\)-Smarandache deductive system \(F\) of \(L_B\).

(iii) \(\Rightarrow\) (iv) By (iii), \((x^n \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x) \in \{1\}\). Hence \((x^n \rightarrow y) \rightarrow y \leq ((y \rightarrow x) \rightarrow x)\). So by Proposition 2.3, \(L_B\) is an \(n\)-fold Smarandache fantastic \(B_L\)-residuated lattice. Let \(y \rightarrow x \in \{1\}\). By the fact that \(L_B\) is an \(n\)-fold Smarandache fantastic \(B_L\)-residuated lattice we get \((x^n \rightarrow y) \rightarrow y \rightarrow x \in \{1\}\), i.e. \(\{1\}\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter of \(L_B\).

\[\square\]

Corollary 2.1. Let \(L_B\) be an \(n\)-fold Smarandache fantastic \(B_L\)-residuated lattice and \(F\) be a \(B_L\)-Smarandache deductive system of \(L_B\). Then \((x^n)^{**} \rightarrow x \in F\), for all \(x \in B\).

Proof. In Proposition 2.4, take \(y = 0\). Thus the proof is clear. \[\square\]

Corollary 2.2. Let every \(B_L\)-Smarandache deductive system of \(L_B\) be a \(B_L\)-Smarandache filter of \(L_B\) and \(F\) be a \(B_L\)-Smarandache deductive system of \(L_B\). Then the following conditions are equivalent:

(i) \(L_B\) is an \(n\)-fold Smarandache implicative \(B_L\)-residuated lattice.

(ii) \(L_B\) is an \(n\)-fold Smarandache fantastic \(B_L\)-residuated lattice and \(n\)-fold Smarandache positive implicative \(B_L\)-residuated lattice.

Proof. By Theorem 1.2(i), Propositions 2.4, 1.6, 1.4 and Theorem 2.3, the proof is easy. \[\square\]

Corollary 2.3. Let \(F\) be a \(B_L\)-Smarandache deductive system of \(L_B\). \(F\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter of \(L_B\) if and only if \(L_B/F\) is an \(n\)-fold Smarandache fantastic \(B_{L/F}\)-residuated lattice.

Proof. Assume that \(F\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter of \(L_B\). Let \(x, y \in B\) be such that \(y/F \rightarrow x/F \in \{1/F\}\), then \((y \rightarrow x)/F = 1/F\) or equivalently \(y \rightarrow x \in F\). Since \(F\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter, we get \((x^n \rightarrow y) \rightarrow x \in F\) or equivalently \(((x^n \rightarrow y) \rightarrow y) \rightarrow x) = 1/F\), so \((((x/F)^n \rightarrow y/F) \rightarrow y/F) \rightarrow x/F) \in \{1/F\}\), for all \(x/F \in B/F\). Hence \(1/F\) is an \(n\)-fold \(B_{L/F}\)-Smarandache fantastic filter of \(L_{B/F}\), therefore by Proposition 2.4, \(L_{B/F}\) is an \(n\)-fold Smarandache fantastic \(B_{L/F}\)-residuated lattice.

Conversely, assume that \(L_{B/F}\) is an \(n\)-fold Smarandache fantastic \(B_{L/F}\)-residuated lattice. Let \(x, y \in B\) be such that \(y \rightarrow x \in F\) then \((y \rightarrow x)/F = 1/F\) or equivalently \(y \rightarrow x \in F\). Since \(L_{B/F}\) is an \(n\)-fold Smarandache fantastic \(B_{L/F}\)-residuated lattice, by Proposition 2.4, \(1/F\) is an \(n\)-fold \(B_{L/F}\)-Smarandache fantastic filter of \(L_{B/F}\). From this and the fact that \(y/F \rightarrow x/F \in \{1/F\}\), we have \((((x/F)^n \rightarrow y/F) \rightarrow y/F) \rightarrow x/F) \in \{1/F\}\) or equivalently \(((x^n \rightarrow y) \rightarrow y) \rightarrow x) = 1/F\), so \((x^n \rightarrow y) \rightarrow y \rightarrow x \in F\). Hence \(F\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter of \(L_B\).

\[\square\]

Theorem 2.4. Let \(F\) and \(G\) be two \(B_L\)-Smarandache deductive system of \(L_B\) such that \(F \subseteq G\). If \(F\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter, then so is \(G\).

Proof. Let \(x, y \in B\) be such that \(y \rightarrow x \in G\). Since \(F\) is an \(n\)-fold \(B_L\)-Smarandache fantastic filter, by Corollary 2.3, \(L_{B/F}\) is an \(n\)-fold Smarandache fantastic \(B_{L/F}\)-residuated lattice.

So \(((x/F)^n \rightarrow y/F) \rightarrow y/F) \rightarrow x/F = y/F \rightarrow x/F\), hence \((y \rightarrow x) \rightarrow (((x^n \rightarrow y) \rightarrow y) \rightarrow x) \in F\), so \((y \rightarrow x) \rightarrow (((x^n \rightarrow y) \rightarrow y) \rightarrow x) \in G\). By the fact that \(y \rightarrow x \in G\) we we
get \(((x^n \rightarrow y) \rightarrow y) \rightarrow x) \in G\). Hence \(G\) is an \(n\)-fold \(BL\)-Smarandache fantastic filter of \(L_B\).

3. \(n\)-Fold \(BL\)-Smarandache Easy Filters

Definition 3.1. A subset \(F\) of \(L_B\) is called an \(n\)-fold Smarandache easy filter of \(L_B\) related to \(B\) (for briefly \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\)) if \((x^{**})^n \rightarrow (y \rightarrow z) \in F\) and \((x^{**})^n \rightarrow y \in F\) imply \((x^{**})^n \rightarrow z \in F\), for all \(x, y, z \in B\).

Example 3.1. In Example 2.1, \(F = \{d, 1\}\) is an \(n\)-fold \(BL\)-Smarandache easy filter, for \(n \geq 2\). \(F\) is not a 1-fold \(BL\)-Smarandache easy filter. Since \(a^{**} \rightarrow (c \rightarrow a) = 1 \in F\) and \(a^{**} \rightarrow c = 1 \in F\) but \(a^{**} \rightarrow a = c \notin F\).

Theorem 3.1. Every \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\) is a \(BL\)-Smarandache deductive system of \(L_B\).

Proof. Let \(F\) be an \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\). Suppose \(z \in B\), such that \(y, y \rightarrow z \in F\). We have \((1^{**})^n \rightarrow y, (1^{**})^n \rightarrow (y \rightarrow z) \in F\), these imply \(z = (1^{**})^n \rightarrow z \in F\). Hence \(F\) is a \(BL\)-Smarandache deductive system of \(L_B\).

Theorem 3.2. Every \(n\)-fold \(BL\)-Smarandache positive implicative filter of \(L_B\) is an \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\).

Proof. Let \(F\) be an \(n\)-fold \(BL\)-Smarandache positive implicative filter of \(L_B\) and \(x, y, z \in B\) such that \((x^{**})^n \rightarrow (y \rightarrow z) \in F\) and \((x^{**})^n \rightarrow y \in F\). So by Definition 1.1(i), \((x^{**})^n \rightarrow z \in F\). So \(F\) is an \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\).

Example 3.2. Let \(L = \{0, a, b, c, 1\}\), where \(0 < a < b < c < 1\). Define \(\circ\) and \(\rightarrow\) as follows:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

We can see that \(L = (L, \wedge, \vee, \circ, \rightarrow, 0, 1)\) is a residuated lattice, in which \(B = \{0, a, 1\}\) is a \(BL\)-algebra which properly contained in \(L\). Then \(L\) is a Smarandache \(BL\)-residuated lattice. \(F = \{1\}\) is an \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\), while is not 1-fold and 2-fold \(BL\)-Smarandache positive implicative filter. Since \(c^1 \rightarrow (c \rightarrow c^1) = 1 \in F\), but \(c^1 \rightarrow c^2 = c \notin F\). Also \(c^2 \rightarrow (c \rightarrow c^1) = 1 \in F\) and \(c^2 \rightarrow c^1 = 1 \in F\), but \(c^2 \rightarrow c^3 = c \notin F\).

Theorem 3.3. Let \(F\) be a \(BL\)-Smarandache filter of \(L_B\). The following conditions are equivalent:

(i) \(F\) is an \(n\)-fold \(BL\)-Smarandache easy filter of \(L_B\);

(ii) \((x^{**})^n \rightarrow (y \rightarrow z) \in F\) implies \(((x^{**})^n \rightarrow y) \rightarrow ((x^{**})^n \rightarrow z) \in F\), for all \(x, y, z \in B\);

(iii) \((x^{**})^n \rightarrow ((x^{**})^n \rightarrow z) \in F\) implies \((x^{**})^n \rightarrow z \in F\), for all \(x, z \in B\);

(iv) \((x^{**})^n \rightarrow (x^{**})^n \in F\), for all \(x \in B\).

Proof. (i) \(\Rightarrow\) (ii) Let \(F\) be an \(n\)-fold \(BL\)-Smarandache easy filter and \(x, y, z \in B\) such that \((x^{**})^n \rightarrow (y \rightarrow z) \in F\). By Theorem 1.1 we have \((x^{**})^n \rightarrow ((x^{**})^n \rightarrow ((x^{**})^n \rightarrow y) \rightarrow z)\) \(= (x^{**})^n \rightarrow (((x^{**})^n \rightarrow y) \rightarrow ((x^{**})^n \rightarrow z)) \geq (x^{**})^n \rightarrow (y \rightarrow z)\). Hence \((x^{**})^n \rightarrow ((x^{**})^n \rightarrow (y \rightarrow z)) \in F\). From \((x^{**})^n \rightarrow (x^{**})^n = 1 \in F\) and the hypothesis we get \((x^{**})^n \rightarrow ((x^{**})^n \rightarrow y) \rightarrow z) \in F\). By Theorem 1.1, we obtain \(((x^{**})^n \rightarrow y) \rightarrow (x^{**})^n \rightarrow z) \in F\).
(ii) ⇒ (iii) Take \(y = (x^*)^n \), hence the proof is clear.

(iii) ⇒ (i) Let \((x^*)^n \rightarrow (y \rightarrow z) \in F\) and \((x^*)^n \rightarrow y \in F\). By Theorem 1.1 we have \((x^*)^n \rightarrow (y \rightarrow z) = y \rightarrow ((x^*)^n \rightarrow z)\). So \(((x^*)^n \rightarrow y) \rightarrow ((x^*)^n \rightarrow ((x^*)^n \rightarrow z)) \in F\).

Since \((x^*)^n \rightarrow y \in F\) and \(F\) is an \(n\)-fold \(B_L\)-Smarandache filter, \((x^*)^n \rightarrow ((x^*)^n \rightarrow z) \in F\). By Theorem 1.1 we have \((x^*)^n \rightarrow ((x^*)^n \rightarrow z) = (x^*)^{2n} \rightarrow z \in F\). By (ii), \((x^*)^n \rightarrow (x^*)^{2n} \in F\). So \(((x^*)^n \rightarrow (x^*)^{2n}) \circ ((x^*)^{2n} \rightarrow z) \in F\). By Theorem 1.1, \(((x^*)^n \rightarrow (x^*)^{2n}) \circ ((x^*)^{2n} \rightarrow z) \leq (x^*)^n \rightarrow z\). So \((x^*)^n \rightarrow z \in F\). Therefore \(F\) is an \(n\)-fold \(B_L\)-Smarandache easy filter.

(iii) ⇒ (iv) For \(x, y \in B\), we have \((x^*)^n \rightarrow ((x^*)^n \rightarrow (x^*)^{2n}) = (x^*)^{2n} \rightarrow (x^*)^{2n} = 1 \in F\). So by (iii), \((x^*)^n \rightarrow (x^*)^{2n} \in F\).

(iv) ⇒ (iii) Let \(x, y \in B\) such that \((x^*)^n \rightarrow ((x^*)^n \rightarrow y) \in F\), so \((x^*)^{2n} \rightarrow y \in F\). By (iv), \((x^*)^n \rightarrow (x^*)^{2n} \in F\). By Theorem 1.1, \((x^*)^n \rightarrow (x^*)^{2n} \leq ((x^*)^{2n} \rightarrow y) \rightarrow ((x^*)^n \rightarrow y)\). Since \(F\) is a \(B_L\)-Smarandache filter, \(((x^*)^{2n} \rightarrow y) \rightarrow ((x^*)^n \rightarrow y) \in F\), so \((x^*)^n \rightarrow y \in F\). Hence \(F\) is an \(n\)-fold \(B_L\)-Smarandache easy filter.

Theorem 3.4. Let \(F\) and \(G\) be \(B_L\)-Smarandache filters of \(L_B\) and \(F \subseteq G\). If \(F\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\), then \(G\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\).

Proof. Follows from Theorem 3.3 (iv) ⇔ (i). □

Proposition 3.1. For a Smarandache \(B_L\)-residuated lattice \(L_B\), the following conditions are equivalent:

(i) \(\{1\}\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\);

(ii) Every \(B_L\)-Smarandache easy filter of \(L_B\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\);

(iii) \((x^*)^n = (x^*)^{2n}\), for all \(x \in B\).

Proof. (i) ⇒ (ii) The proof is clear, by Theorem 3.4.

(i) ⇔ (iii) By Theorem 3.3, we have \((x^*)^n \rightarrow (x^*)^{2n} \in \{1\} ⇔ (x^*)^n \rightarrow (x^*)^{2n} = 1 ⇔ (x^*)^n \leq (x^*)^{2n} ⇔ (x^*)^n = (x^*)^{2n},\) for all \(x \in B\). □

Corollary 3.1. If \(\{1\}\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\), then \((x^2)^* = x^*\), for all \(x \in B\).

Proof. By Proposition 3.1, \((x^*)^n = (x^*)^{2n}\), for all \(x \in B\) and \(n \in N\). Let \(n = 1\). Then \(x^* = (x^*)^2\) (I). We know \((x^*)^n \leq (x^n)^*\), for all \(n \in N\). Let \(n = 2\). Then \((x^*)^2 \leq (x^2)^*\). Then by (I), we get \(x^* \leq (x^2)^*\). By Theorem 1.1, we get \((x^2)^* \leq x^*\). (II). By Theorem 1.1, we know \(x^2 \leq x\), so \(x^* \leq (x^2)^*\). Therefore by (II), \((x^2)^* = x^*\). □

Definition 3.2. \(L_B\) is said to be an \(n\)-fold Smarandache easy \(B_L\)-residuated lattice if for all \(x \in B\), \((x^*)^n = (x^*)^{2n}\).

Example 3.3. (i) Consider the Smarandache \(B_L\)-residuated lattice \(L\) in Example 2.3(i). Clearly \(L_B\) is an \(n\)-fold Smarandache easy \(B_L\)-residuated lattice.

(ii) Consider the Smarandache \(B_L\)-residuated lattice \(L\) in Example 2.1. Clearly \(L_B\) is not a 1-fold Smarandache easy \(B_L\)-residuated lattice, since \(c = (a^*)^1 \neq (a^*)^2 = 0\).

Corollary 3.2. For a Smarandache \(B_L\)-residuated lattice \(L_B\), the following conditions are equivalent:

(i) \(\{1\}\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\);

(ii) Every \(B_L\)-Smarandache filter of \(L_B\) is an \(n\)-fold \(B_L\)-Smarandache easy filter of \(L_B\);

(iii) \(L_B\) is an \(n\)-fold Smarandache easy \(B_L\)-residuated lattice.

Proof. By Proposition 3.1, the proof is clear. □
Corollary 3.3. Let F be a B_L-Smarandache deductive system of L_B. Then F is an n-fold B_L-Smarandache easy filter of L_B (in short n-fold B_L-SEF) if and only if L_B/F is an n-fold Smarandache easy B_L/F-residuated lattice (in short n-fold B_L-SERL).

Proof. By Theorem 3.3 we get:

$$F \text{ is an n-fold } B_L\text{-SEF} \iff (x^{*})^n \rightarrow (x^{*})^{2n} \in F, \forall x \in B,$$

$$\iff (x^{*})^n \rightarrow (x^{*})^{2n} = 1/F, \forall x/F \in B/F,$$

$$\iff (x^{*}/F)^n \rightarrow (x^{*}/F)^{2n} = 1/F, \forall x/F \in B/F,$$

$$\iff ((x/F)^{*})^n \leq ((x/F)^{*})^{2n}, \forall x/F \in B/F,$$

$$\iff ((x/F)^{*})^n = ((x/F)^{*})^{2n}, \forall x/F \in B/F,$$

$$\iff L_B/F \text{ is an n-fold } B_L/F\text{-SERL}.$$

By Corollary 3.2 and 3.1, we have the following corollary.

Corollary 3.4. Let L_B be an n-fold Smarandache easy B_L-residuated lattice. Then $(x^{2})^* = x^*$, for all $x \in B$.

Proposition 3.2. Every n-fold Smarandache positive implicative B_L-residuated lattice is an n-fold Smarandache easy B_L-residuated lattice.

Proof. Let L_B be an n-fold Smarandache positive implicative B_L-residuated lattice. By Theorem 1.4, every B_L-Smarandache deductive system of L_B is an n-fold B_L-Smarandache positive implicative filter of L_B. Hence by Theorem 3.2, every B_L-Smarandache deductive system of L_B is an n-fold B_L-Smarandache easy filter of L_B. Since every B_L-Smarandache filter is a B_L-Smarandache deductive system, then every B_L-Smarandache filter is an n-fold B_L-Smarandache easy filter of L_B. Therefore by Corollary 3.2, L_B is an n-fold Smarandache easy B_L-residuated lattice.

Theorem 3.5. For a Smarandache B_L-residuated lattice L_B, the following conditions are equivalent:

(i) L_B is an n-fold Smarandache easy B_L-residuated lattice;

(ii) $(x^{*})^n \leq y \rightarrow z$ implies $(x^{*})^n \rightarrow y \leq (x^{*})^n \rightarrow z$, for all $x,y,z \in B$;

(iii) $(x^{*})^n \leq (x^{*})^n \rightarrow z$ implies $(x^{*})^n \leq z$, for all $x,z \in B$.

Proof. (i) \Rightarrow (ii) Let L_B be an n-fold Smarandache easy B_L-residuated lattice. By Corollary 3.2, $\{1\}$ is an n-fold B_L-Smarandache easy filter of L_B. Let $(x^{*})^n \leq y \rightarrow z$, for all $x,y,z \in B$. So $(x^{*})^n \rightarrow (y \rightarrow z) \in \{1\}$. Then by Theorem 3.3, we get $((x^{*})^n \rightarrow y) \rightarrow ((x^{*})^n \rightarrow z) \in \{1\}$. And so $(x^{*})^n \rightarrow y \leq (x^{*})^n \rightarrow z$.

(iii) \Rightarrow (i) Take $y = (x^{*})^0$, hence the proof is clear.

(iii) \Rightarrow (ii) Let $(x^{*})^n \rightarrow ((x^{*})^n \rightarrow z) \in \{1\}$. So $(x^{*})^n \leq (x^{*})^n \rightarrow z$. Hence by (iii), $(x^{*})^n \leq z$, for all $x,z \in B$. Then $(x^{*})^n \rightarrow z \in \{1\}$, for all $x,z \in B$. By Theorem 3.3, $\{1\}$ is an n-fold B_L-Smarandache easy filter of L_B. Therefore by Corollary 3.2, L_B is an n-fold Smarandache easy B_L-residuated lattice.

4. Conclusion

In this paper we introduced the notion of n-fold B_L-Smarandache (easy) fantastic filter in Smarandache residuated lattices and we have established extension property for them. Also we defined the notions of n-fold Smarandache fantastic B_L-residuated lattice and n-fold Smarandache easy B_L-residuated lattice and we presented a characterization and many important properties of them. We proved that if L_B is an n-fold Smarandache
fantastic B_L-residuated lattice, then F is a B_L-Smarandache deductive system iff F is an n-fold B_L-Smarandache fantastic filter. Also we proved that L_B is an n-fold Smarandache easy B_L-residuated lattice iff every B_L-Smarandache filter of L_B is an n-fold B_L-Smarandache easy filter of L_B. We show every n-fold Smarandache positive implicative B_L-residuated lattice is an n-fold Smarandache easy B_L-residuated lattice. We hope this work would serve as a foundation for further studies on the structure of Smarandache residuated lattices.

REFERENCES