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Abstract 

This article presents the notion of n-refined neutrosophic modules such as cyclic, simple, and finitely generated 

modules. n-refined neutrosophic is a generalization of neutrosophic properties. This paper presents new relations 

among n-refined neutrosophic modules. Finally, several examples and properties have been studied about the 

relations between these modules. 

Keywords: Simple module; cyclic module; finitely generated module; neutrosophic set; neutrosophic Modul. 

 

1. Introduction 

The neutrosophic notion was founded by Smarandache [1] in 1998 as an extension of fuzzy [2] and intuitionistic 

fuzzy [3] notions to deal with indeterminacy in real-life issues. This idea has been expanded and applied to 

various fields of mathematics, such as complex space [4-7], topology space [8-10], statistics, probability [11,12]. 

In neutrosophic algebra, several useful studies have emerged that have worked to highlight the role of 

indeterminacy in numerous algebraic structures. The neutrosophic triplet group was introduced by Smarandache 

and Ali [13]. Jun et al. [14] constructed neutrosophic quadruple BCK/BCI-numbers. Abobala [15] devoted some 

linear equations over the neutrosophic field. Abed et al. [16] introduced some new results of the neutrosophic 

multiplication module. Al-Hamido [17] discussed a new approach to a neutrosophic algebraic structure called 

neutrosophic groupoid.  Zail et al. [18] studied some new results of a generalization of BCK-algebra (Ω-BCK-

algebra). and other contributions, see [19-22]. 

A refined neutrosophic structure [23] was proposed by dividing the indeterminacy part into two levels of 

subindeterminacies. Recently, the idea of n-refined neutrosophic structures was defined as a generalization of 

Refined neutrosophic, and it was used by [24,25]. In this paper, we give some new results on n-Refined 

Indeterminacy of some Modules based on n-refined neutrosophic idea, where we present new relations of n-

refined neutrosophic Modules. 

 

2.Preliminaries 

This section is about some of the vital definitions, remarks and examples which are used later in this paper. 

Definition 2.1. [2]  

Let X be a nonempty set. A fuzzy set A = {˂x, µA(x)˃ | x ∈ X} is characterized by a membership function µA: 

X → [0, 1], where µA(x) is interpreted as the degree of membership of the element x in the fuzzy subset A for 

any x ∈ X. 
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Definition 2.2.  [1]  

 Let A be a universal set. The neutrosophic A, in short NE (A) is defined as 

B={(𝜉, 𝑡𝐻(𝜉), 𝑖𝐻(𝜉), 𝑓𝐻(𝜉) :𝜉 ∈ A} ∋ 𝑡𝐻, 𝑖𝐻, 𝑓𝐻 : A→[0, 1]. 

Note that there is an equivalent definition to Definition 2.2 and by the following: 

Let X be a nonempty set. A neutrosophic set (NS, for short) A on X is an object of the form A = {˂x, µA(x), 

σA(x), νA(x)˃ | x ∈ X} characterized by a membership function µA : X →] −0, 1+[ and an indeterminacy 

function σA : X →] −0, 1+[ and a non-membership function νA : X →] −0, 1+[ which satisfy the condition: −0 

≤ µA(x) + σA(x) + νA(x) ≤ 3+, for any x ∈ X. 

 

Definition 2.3. [14]  

Let (G, x) be a group. Then NE(G) = (<G U I>, *) is said to be neutrosophic group and generated by G and I 

with binary operation *, where < G U I > = {a1 +a2 I: a1, a2 ∈ G}. 

Remark 2.2. 

 1- We denote I to neutrosophic element such That I2 = I 2- The inverse of I does not exists. 

3- All integers n, n + I, nI and 0. I, 0.I-1 are neutrosophic element.  

4- NE(G) is commutative If a1a2 =  a2a1 ∀ a1, a2 ∈ NE(G). 

5- NE(R) = <G U I) is not a group.  

6- Any group (G, *) ⊆ NE(G). 

 

 

Definition 2.4. [15]  

Let (R ,+, ⋅) be a ring. Then NE(R) = (<R U I>, +, ⋅) is said to be neutrosophic ring and generate by R and I 

with two binary operation ( + ) and ( ⋅ ). 

Remarks 2.5.  

1- I2 = I, 0.I = 0. I-1, n, n + I and nI are neutrosophic elements.  

2- I-1 not exists 

Example 2.6. 

A pair <Z U I> is a neutrosophic ring, where Z is the integer numbers. 

Now we can present neutrosophic Module on based neutrosophic group and neutrosophic ring.  

Definition 2.7. [20] 

 A commutative group M is called R-Module With the ring R where *: R × M ⟶ M define by: f (r1m) = rm ∀ r 

∈ R, m ∈ M such that: 1- r (m1 + m2) = rm1 +rm2 ∀ r ∈ R, m1, m2 ∈ M. 

2- (r₁+r2) m = r1m + r2m ∀ r1 ∈ R, r2 ∈ R, m ∈ M. 

3- r1 (r2m) = (r1r2) m 

4-1.m = m = m.1 

Definition 2.8. [21]  

Let M be an R-Module and let I be indeterminacy (neutresuphic). Then (M(I), + , ∙) is called neutrosophic 

Module over R(I) Where R(I) is a neutrosophic ring. 

https://doi.org/10.54216/IJNS.200202
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Remark 2.9. 

 Any element in M(I) has form a + b ∋ a, b ∈ M (M(I) = M+MI). 

 

3. Main Results. 

Definition 3.1.  

We say Mn(I) is n-refined noutrophic Module where Mn(I) = M + MI1 + …+ MIn = {a0 + a1I + a2I + …+ anIn}. 

Remark 3.2. Rn(I) is called n-refined neutrosophic ring and Gn(I) is called n-refined neutrosophic group. 

Definition 3.3. 

 Any R-Module M is called cyclic if  ∀ () ∈ M, then M = Rx ((x) = M). So M(I) is called cyclic neutrosophic 

Module if Mc(I) = R(I)x and Mc(I) = R(I)x = {(rx)I: r ∈ R(I), x ∈ M(I)}.  

 Example 3.4.  

If Ze as a neutrosophic Z(I)-Modules, then Ze(I) is cyclic neutrosophic Module, because there exists 2I ∈ Ze(I) ∋  

 

(2I) = 2Z(I) = {2Z(I): z ∈ Z(I)} = Ze(I). 

Example 3.5.  

Let Q(I) as a Z(I)-Module. Then Q(I) is not cyclic neutrosophic Module, because there is no xI ∈ Q(I) ∋ (xI) = 

Q(I). 

Note that from Example 3.4; we say Ze(n) (I) is n-refined cyclic neutrosophic Module because 2In = 2Z(I) = 

Ze(n)(I)). Also, since ∄ xI ∈ Q(I) ∋ (xI) = Q(I), then Q(I) is not n-refined neutresuphic cyclic Module. 

Theorem 3.6. 

 Let R2(I) be an neutrosophic Module over neutresophic ring R(I). Then R2(I) is not cyclic neutrosophic Module.  

Proof. 

 If xI generating R2(I), then xI has at least two neutrosophic elements like {(1, 0)I1, (0, 1)I2}. Hence ∄ xI ∈ R²(I)  

∋ (xI) = R2(I). 

Remarks 3.7.  

1- Zn(I) as a Zn(I) Module is n-refined cyclic neutrosophic Module. 

2- R2(I) as a R(I)-Module is not n-refined cyclic neutrosophic Module. 

3- Kzn(I) is n-refined cyclic submodule of Zn(I), because k ∈ Kzn(I) ∋ (k) = kZn(I) where n-refined neutrosophic 

submodule define in general by: 

Definition 3.8. 

 Let Mn(I) be n-refined neutrosophic Module over the n-refined neutrosophic ring Rn(I). Then 𝜙 ≠ Nn(I) ⊆ Mn(I) 

is called n-refined neutrosophic submodule of Mn(I) if Nn(I) ≤ Mn(I). 

Theorem 3.9.  

Let Mn(I) be n-refined neutrosophic Module and let (xIn) ∈ Mn(I). Then (xIn) = Rn(xIn) = { rxIn : r ∈ Rn(I)} is n-

refined neutrosophic submodule of Mn(I). 

Proof. 

 Since (0In) ∈ Mn(I) and (0x) = 0, then 0 ∈ (xIn). So (xIn) ≠ ∅. Now, let r1xIn, r2xIn ∈ (xIn) ∀ r1, r2 ∈ Rn(I). Then 

r1xIn + r2xIn =                         (r1+r2)xIn, r1 + r2 ∈ Rn(I) = r3xIn ∈ (xIn). 

https://doi.org/10.54216/IJNS.200202
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Also, let rxIn ∈ (xIn) and let s ∈ Rn(I), so S(rxIn) = (Sr)xIn, (sr ∈ Rn(I), t = sr). So (sr)xIn = txIn ∈ (xIn). Thus (xIn) 

= Rn(I)x ≤  Mn(I). 

Definition 3.10.  

Let M be an R-Module. Then M is called simple if ∅ ≠ M and M have only two submodules {0} and M. 

Definition 3.11. 

 Let Mn(I) be n-refined neutrosophic Module over n-refined neutrosophic ring Rn(I). Then Mn(I) is called n-

refined simple neutrosophic Module if ∅ ≠ Mn(I) and Mn(I) have only two n-refined neutrosophic submodules 

0I and Mn(I). 

Example 3.12.   

Let Zn(p)(I) as a Zn(I)-Module is n-refined simple neutrosophic Module. Where p is neutrosophic prime number, 

because there are only two n-refined neutrosophic submodules are 0I and Zn(p)(I). 

Example 3.13. 

 Z(I) as a Zn(I)-Module is not n-refined simple neutrosophic Module, because (2I1) ≤ Z6(I) and 3I2 ≤ Z6(I), but 

(2I1) and (3I2) are proper submodules of Z6. 

Theorem 3.14.  

Let Mn(I) be n-refined neutrosophic Module. If Mn(I) is n-refined simple neutrosophic Module, then it is n-

refined cyclic neutrosophic Module. 

Proof. 

 Let Mn(I) be on-refined simple neutrosophic Module and let 0 ≠ xI be a neutrosophic element of Mn(I). So (xI) 

≤ Mn(I), because xI ∈ Mn(I), so (xI) = Rn(I)xI = {rxI :r ∈ Rn(I) ≤ Mn(I)}. Since Mn(I) is n-refined simple 

neutrosophic Module, then (xI) = 0 or xI = Mn(I). We have xI ≠ 0. Then xI = Mn(I). Thus Mn(I) is n-refined cyclic 

neutrosophic Module. 

Remark 3.15.  

The converse Theorem 3-14 is not true in general, for example; Z6 as Zn(I)-Module is n-refined cyclic 

neutrosophic Module, 

 but Z6 is not n-refined simple neutresophic Module because; (2I) = {0I1, 2I2, 4I3} and (3I) = {0I, 3I} are proper 

n-refined neutrosophic submodule of Z6.  

Corollary 3.16.  

Let Mn(I) be n-refined neutresophic Module. Then Mn(I) is n-refined Simple neutrosophic Module iff Mn(I) ≠ 0I 

and ∀  0I ≠ Mn(I), mI ≠ 0, so (mI)Rn(I) = Mn(I).  

Proof. 

 ⟹ Let mI ≠ 0, so mI = mI ∙ 1 ∈ mIRn(I). Then mIRn(I) ≠ 0I. Hence mIRn(I) = Mn(I). 

⟸ Let 0I ≤ Nn(I) and 0I ≠ mI ∈ Nn(I). Then mIRn(I) = Mn(I). 

Definition 3.17.  

Let Mn(I) be n-refined neutrosophic Module. We say Mn(I) is n-refined finitely generated neutrosophic Module 

if it is generated by a finite subset Xn(I), that is Mn(I) = < Xn(I) >. 

Remarks and Examples 3.18. 

1) Mn(I) = <x1I,  x2I,…, xkI> = { ∑ (riI)(xiI): riI ∈  Rn(I), xiI ∈ Xn(I), kI ∈ Zn(I)}. 

2) Mn(I) = <xI, yI) = rIxI + rIyI, Module generate by two elements xI, yI.  

3) Mn(I) = <xI, yI, zI> = rIxI+ sIyI + tIzI, Module generated by three elements.  

 

4) Let Mn(I) = Z4(I) = {0I, 1I, 2I, 3I} as Zn(I)-Module and Xn(I) = {0I, 1I, 2I}. Since 1I + 2I = 3I, then Mn(I) 

= <Xn(I)> = {0I, 1I, 2I, 3I} = Z4(I). So Z4(I) is n-refined finitely generated neutrosophic Module. 

https://doi.org/10.54216/IJNS.200202
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5) The rational numbers Qn(I) as Zn(I)-Module is not n-refined finitely generated neutrosophic Module, 

because there is no finite n-refined neutrosophic subset Xn(I) such that Qn(I) = <Xn(I)) as a Zn(I)-Module. 

6) If Xn(I) is n-refined neutrosophic subset of Rn(I)-Module, then <Xn(I)> will denote the n-refined 

neutrosophic intersection of all submodules of Mn(I) which contains Xn(I) (<Xn(I)> = (∩An(I), Xn(I)  ⊆ An(I) 

with An(I) ≤ Mn(I)).  

Theorem 3.19.  

Let Xn(I) be n-refined neutrosophic subset of n-refined neutrosophic Rn(I)-Module Mn(I). Then <Xn(I)> is the 

Smallest n-refined neutrosophic submodule of Mn(I) that Contains Xn(I). 

Proof. 

 since <Xn(I)> ≤ Mn(I) with <Xn(I)> = ∩An(I), Xn(I) ⊆ An(I), An(I) ≤ Mn(I), so if Nn(I) is n-refined neutrosophic 

submodule of Mn(I) (Nn(I) ≤  Mn(I)), such that Xn(I) ⊆ Nn(I), then <Xn(I)> ⊆ Nn(I). Hence <Xn(I)> is the smallest 

n-refined neutrosophic submodule of Mn(I), Xn(I) ⊆ Mn(I). Example 3.20. Let Xn(I) = {4I, 8I}. Then (4I, 8I) = 

4IZn(I). 

Theorem 3.21. 

 Every n-refined cyclic neutrosophic Module is n-refined finitely generated neutrosophic Module. 

Proof. 

 Let Mn(I) be n-refined neutrosophie Rn(I)-Module. Suppose that Mn(I) is a cyclic. Then 

                 ∃ xI ∈ Mn(I) ∋ <xI> = Mn(I). 

Since {xI} is neutrosophic singleton set, then {xI}is finite neutrosophic subset of Mn(I) and <{xI}> = Mn(I). 

Thus Mn(I) is n-refined finitely generated neutrosophic Module. 

Remark 3.22. 

 The converse of Theorem 3.11. is not trues for example, let Mn(I) as Zn(I)-Module ∋ R2 = Mn(I) = Z3(I) ⨁ Z6(I). 

Then Mn(I) is n-refined finitely generated neutrosophic Module and Mn(I) = <Xn(I)>, Xn(I) = {(1, 0) I, (0,1) I}. 

But this means Mn(I) generate by two neutrosophic element and there is no one neutrosophic element xI ∈ Mn(I) 

∋ Mn(I) = <xI>. Thus Mn(I) is not n-refined cyclic neutrosophic Module. 

Corollary 3:23.  

The Rn(I)-Module Mn(I) is n-finitely generated neutrosophic Module if and only if there is in every Set {Ain(I): 

i ∈ I} of n-refined neautrosophic submodules (Ain (I)  ≤ Mn(I)) with Σi ∈I Ain(I) = Mn(I) a finite neutrosophic 

subset {Ain(I) : i ∈ I0} such that Σi ∈I Ain(I) = Mn(I) with I0 ⊆ I and I0 is finite. 

 Proof. 

 ⟹ Let Mn(I) be n-refined finitely generated neutrosophic Module. So, 

             Mn(I) = m1IRn(I) + m₂IRn(I) +…+ mRIRn(I). Since ∑Ain(I) = Mn(I),  i ∈ I, then every min is finite sum of 

neutrosophic elements from An(I), So there exists a finite neutrosophic subset I0 ⊂ I ∋  M1nI, M2nI, M3nI,…, MknI  

∈ ∑ Ain(I), i ∈ I0. Then Mn(I) ≤ ∑i∈I Ain(I) ≤ Mn(I). 

Thus Mn(I) = ∑Ain(I), i ∈ I0.  

⟸ Consider the n-refined neutrosophic set of n-refined neutrosophic Submodules {rI ∈ Rn(I), mI ∈ Mn(I). Hence 

there exists n-refined neutrosophic subset {m1IRn(I), m2IRn(I), …, mnIRn(I)} such that 

m1IRn(I) + m2IRn(I) + … +mnIRn(I) = Mn(I). Thus Mn(I) is n-refined finitely generated neutrophic Module. 

Proposition 3.24. 

 Let Mn(I) be n-refined Noetherian neutrosophic Module. Then Mn(I) is n-refined f. generated neutrosophic 

Module. 
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Proof. 

 Suppose that Fn(A) the family repesente to all n-refined f. generated neutrosophic submodule in Mn(I). So Fn(A) 

has n-refined neutrosophic maximal element and satisfied neutrosophic scendind chain condition. Assume that 

mI ∈ Mn(I). Hence xI + (mI)Rn(I) is n-refined f. generated neutrosophic submodule of Mn(I). Therefore, x0I + 

(mI)Rn(I) (neutrosophic maximally of x0I). So xI ∈ x0I and hence Mn(I) = x0I. Then Mn(I) is n-refined f. generated 

neutrosophic Module. 

Definition 3.24. 

 Any Module Mn(I) is called n-refined Noetherian neutrosophic module if it Satisfies n-refined neutrosophic 

ascending Chaim Condition (ACC) of submodules: 

             0 = A0(I) ⊆ A1(I) ⊆ A2(I) ⊆ … ⊆ An(I) = Rn(I). 

 

 

Corollary 3.26. 

 If Mn(I) is n-refined neutrosophic module has finite length property. Then Mn(I) is n-refined f-generated 

neutrosophic module. 

Proof. 

 Suppose that Mn(I) is n-refined neutrosophic finite length. So Mn(I) is n-refined Noetherian neutrosophic 

module. Thus Mn(I) is n-refined neutrosophic f-generated. 

 

4. Conclusion 

In this work, we have employed the idea of the refined neutrosophic set to produce some modules, such as cyclic, 

simple, and finitely generated modules. Also, we showed the new relations of n-refined neutrosophic modules 

as well as several examples and properties that have been studied about the relations. Finally, we hope that this 

study will show the importance of neutrosophic ideas in strengthening different algebraic structures. 
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