Scientia Magna

Vol. 3 (2007), No. 1, 98-101

On the near pseudo Smarandache function

Yongfeng Zhang
Department of Mathematics, Xianyang Normal College, Xianyang, Shaanxi, P.R.China

Received June 13, 2006

Abstract

For any positive integer n, the near pseudo Smarandache function $K(n)$ is defined as $K(n)=m=\frac{n(n+1)}{2}+k$, where k is the smallest positive integer such that n divides m. The main purpose of this paper is using the elementary method to study the calculating problem of an infinite series involving the near pseudo Smarandache function $K(n)$, and give an exact calculating formula.

Keywords Near pseudo Smarandache function, infinite series, exact calculating formula.

§1. Introduction and results

For any positive integer n, the near pseudo Smarandache function $K(n)$ is defined as follows:

$$
K(n)=m
$$

where $m=\frac{n(n+1)}{2}+k$, and k is the smallest positive integer such that n divides m.
The first few values of $K(n)$ are $K(1)=2, K(2)=4, K(3)=9, K(4)=12, K(5)=20$, $K(6)=24, K(7)=35, K(8)=40, K(9)=54, K(10)=50, K(11)=77, K(12)=84, K(13)=$ $104, K(14)=112, K(15)=135, \cdots$. This function was introduced by A.W.Vyawahare and K.M.Purohit in [1], where they studied the elementary properties of $K(n)$, and obtained a series interesting results. For example, they proved that 2 and 3 are the only solutions of $K(n)=n^{2}$; If $a, b>5$, then $K(a \cdot b)>K(a) \cdot K(b)$; If $a>5$, then for all positive integer n, $K\left(a^{n}\right)>n \cdot K(a)$; The Fibonacci numbers and the Lucas numbers do not exist in the sequence $\{K(n)\}$; Let C be the continued fraction of the sequence $\{K(n)\}$, then C is convergent and $2<C<3 ; K\left(2^{n}-1\right)+1$ is a triangular number; The series $\sum_{n=1}^{\infty} \frac{1}{K(n)}$ is convergent. The other contents related to the near pseudo Smarandache function can also be found in references [2], [3] and [4].

In this paper, we use the elementary method to study the calculating problem of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{K^{s}(n)} \tag{1}
\end{equation*}
$$

and give an exact calculating formula for (1). That is, we shall prove the following conclusion:
Theorem. For any real number $s>\frac{1}{2}$, the series (1) is convergent, and
(a)

$$
\sum_{n=1}^{\infty} \frac{1}{K(n)}=\frac{2}{3} \ln 2+\frac{5}{6}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{1}{K^{2}(n)}=\frac{11}{108} \cdot \pi^{2}-\frac{22+2 \ln 2}{27}
$$

In fact for any positive integer s, using our method we can give an exact calculating formula for (1), but the calculation is very complicate if s is large enough.

§2. Proof of the theorem

In this section, we shall prove our theorem directly. In fact for any positive integer n, it is easily to deduce that $K(n)=\frac{n(n+3)}{2}$ if n is odd and $K(n)=\frac{n(n+2)}{2}$ if n is even. So from this properties we may immediately get

$$
\frac{n^{2}}{2}<K(n)<\frac{(n+3)^{2}}{2}
$$

or

$$
\frac{1}{(n+3)^{2 s}} \ll \frac{1}{K^{s}(n)} \ll \frac{1}{n^{2 s}} .
$$

So the series (1) is convergent if $s>\frac{1}{2}$.
Now from the properties of $K(n)$ we have

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{K(n)} & =\sum_{n=1}^{\infty} \frac{1}{K(2 n-1)}+\sum_{n=1}^{\infty} \frac{1}{K(2 n)} \\
& =\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(n+1)}+\sum_{n=1}^{\infty} \frac{1}{2 n(n+1)} \\
& =\frac{2}{3} \cdot \sum_{n=1}^{\infty}\left(\frac{1}{2 n-1}-\frac{1}{2 n+2}\right)+\frac{1}{2} \cdot \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{2}{3} \cdot \lim _{N \rightarrow \infty}\left(\sum_{n \leq N} \frac{1}{2 n-1}-\sum_{n \leq N} \frac{1}{2 n+2}\right)+\frac{1}{2} \\
& =\frac{2}{3} \cdot \lim _{N \rightarrow \infty}\left(\sum_{n \leq 2 N} \frac{1}{n}-\frac{1}{2 N+2}+\frac{1}{2}-\sum_{n \leq N} \frac{1}{n}\right)+\frac{1}{2} . \tag{2}
\end{align*}
$$

Note that for any $N>1$, we have the asymptotic formula (See Theorem 3.2 of [5])

$$
\begin{equation*}
\sum_{n \leq N} \frac{1}{n}=\ln N+\gamma+O\left(\frac{1}{N}\right) \tag{3}
\end{equation*}
$$

where γ is the Euler constant.
Combining (2) and (3) we may immediately obtain

$$
\sum_{n=1}^{\infty} \frac{1}{K(n)}=\frac{2}{3} \cdot \lim _{N \rightarrow \infty}\left[\ln (2 N)+\gamma+\frac{1}{2}-\ln N-\gamma+O\left(\frac{1}{N}\right)\right]+\frac{1}{2}=\frac{2}{3} \ln 2+\frac{5}{6}
$$

This completes the proof of (a) in Theorem.
Now we prove (b) in Theorem. From the definition and properties of $K(n)$ we also have

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{K^{2}(n)} & =\sum_{n=1}^{\infty} \frac{1}{K^{2}(2 n-1)}+\sum_{n=1}^{\infty} \frac{1}{K^{2}(2 n)} \\
& =\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}(n+1)^{2}}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}(n+1)^{2}} \tag{4}
\end{align*}
$$

Note that the identities

$$
\begin{gather*}
\frac{1}{(2 n-1)^{2}(n+1)^{2}}=\frac{2}{27}\left(\frac{1}{2 n+2}-\frac{1}{2 n-1}\right)+\frac{1}{9} \frac{1}{(2 n-1)^{2}}+\frac{1}{9} \frac{1}{(2 n+2)^{2}}, \tag{5}\\
\frac{1}{n^{2}(n+1)^{2}}=2\left(\frac{1}{n+1}-\frac{1}{n}\right)+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}, \tag{6}\\
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8} \text { and } \sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=\frac{\pi^{2}}{6}-1 . \tag{7}
\end{gather*}
$$

From (3), (4), (5), (6) and (7) we may deduce that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{K^{2}(n)}= & \frac{2}{27} \cdot \sum_{n=1}^{\infty}\left(\frac{1}{2 n+2}-\frac{1}{2 n-1}\right)+\frac{1}{9} \cdot \sum_{n=1}^{\infty}\left(\frac{1}{(2 n-1)^{2}}+\frac{1}{(2 n+2)^{2}}\right) \\
& +\frac{1}{2} \cdot \sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n}\right)+\frac{1}{4} \cdot \sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}\right) \\
= & \frac{2}{27} \cdot \lim _{N \rightarrow \infty}\left[\sum_{n \leq N} \frac{1}{2 n+2}-\sum_{n \leq N} \frac{1}{2 n-1}\right]+\frac{\pi^{2}}{72}+\frac{\pi^{2}}{216}-\frac{1}{36} \\
& +\frac{1}{2} \cdot \lim _{N \rightarrow \infty}\left[\sum_{n \leq N} \frac{1}{n+1}-\sum_{n \leq N} \frac{1}{n}\right]+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}-\frac{1}{4} \\
= & \frac{2}{27} \cdot \lim _{N \rightarrow \infty}\left[-\frac{1}{2}+\ln N-\ln (2 N)+O\left(\frac{1}{N}\right)\right]+\frac{\pi^{2}}{54}-\frac{1}{36} \\
= & -\frac{1}{2}+\frac{\pi^{2}}{12}-\frac{1}{4} \\
& \frac{11}{108} \cdot \pi^{2}-\frac{22+2 \ln 2}{27} .
\end{aligned}
$$

This completes the proof of (b) in Theorem.

References

[1] A.W.Vyawahare and K.M.Purohit, Near Pseudo Smarandache Function, Smarandache Notions Journal, 14(2004), 42-59.
[2] C.Ashbacher, Introduction to Smarandache functions, Journal of Recreational Mathematics, 1996, 249.
[3] David Gorski, The Pseudo Smarandache Functions, Smarandache Notions Journal, 12(2000), 104.
[4] Castrillo Jose, Smarandache Continued Fractions, Smarandache Notions Journal, 9(1998), 40.
[5] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

