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1. Introduction:

Smarandache [12] initiated the concept of neutrosophic set which overcomes the inherent
difficulties that existed in fuzzy sets[14] and intuitionistic fuzzy sets [3].Following this, the
neutrosophic sets are explored to different heights in all fields of science and
engineering.l.Arockiarani et al. defined the notion of fuzzy neutrosophic sets [1].In this paper
the topology for fuzzy neutrosophic set is introduced and also some basic properties of fuzzy

neutrosophic sets are derived.

2. Preliminaries:

2.1. Definition [7]:
A Neutrosophic set A on the universe of discourse X is defined as A=
(o, T, (), Li(x), Fy (X)), x € X where T, I, F: X —» 170, 1*[ and °5Ta(0+a00+Fa(0<3"

2.2. Definition [1]:

A Fuzzy neutrosophic set A on the universe of discourse X is defined as A=

(x, T4 (), 14(x), F4(x)),x € X where T,I,F: X —[0,1] and ° <Ta0) + 1a() + Fa(x)<3
2.3. Definition [8]:

A*=<x,T OO % (X),F *(X)>
A A where

An intuitionistic  neutrosophic set is defined by
i * il * - . ] i * y * = g d
mm%rA (x) FA (x)}< 0.5 mmiTA (x) IA (x)}< 0.5an
min {F *(X) 1 % (xX)(<05 forallx e X
A A

<T » (X)+] «(X)+F L (x)<2
A A A

With the condition °
2.4. Definition [1]:

A Fuzzy neutrosophic set A is a subset of a Fuzzy neutrosophic set B (i.e.,) A c B for all x if

TaA(X) <Tg(x) . 14 (¥)=lg (x) ,Fp (X)=Fg (X)
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2.5. Definition [1]:

Let X be a non empty set, and A=*TACMTAC)FAG)B=(xTa().18(FB(X) he two Fuzzy neutrosophic

sets. Then A L B=(x, max (TA(x),TB (), mex(1 A (), 15 (X)), min(FA () Fis (x)))
AN B:<x,min (TA(x),TB(x)),min(IA(x),IB(x)),max(FA(x), FB(x))>
2.6. Definition [1]:

The difference between two Fuzzy neutrosophic sets A and B is defined as A\B (x)=

{xmin (T (), Fg (), min(1 5 (.21 g (X)) , Mex(F 5 ()T ()))

2.7. Definition [1]:
A Fuzzy neutrosophic set A over the universe X is said to be null or empty Fuzzy
neutrosophic set if Ta(x) =0 ,Ia(X) =0, Fa(x) =1 for all x €X. It is denoted by Oy

2.8. Definition [1]:
A Fuzzy neutrosophic set A over the universe X is said to be absolute (universe) Fuzzy
neutrosophic set if Ta(X) =1, Ia(X) =1, Fa(x) =0 forall x €X. It is denoted by 1y

2.9. Definition [1]:
The complement of a Fuzzy neutrosophic set A is denoted by A and is defined as

AC:<><,T ). . (x).F (x)> T ()=Fa (), 1 (X)=1-1,(x), F . (X)=T,(X)
A A A [\ vhere  ACTTT AT A ATTTATTAY The complement of a Fuzzy

neutrosophic set A can also be defined as A® = 1y - A.

3. Basic Properties Of Fuzzy Neutrosophic Sets:

3.1. Proposition:

Let A; ’s and B be Fuzzy neutrosophic sets in X (i€J) then 4=° for each <) =UA B
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Proof:
= TAl(x)sTB(x), IAZ (x)<lg(x), FAl(X) 2 Fg (X)
Ty (X)STo(X), 1y (X)<Ig(X),Fy (X) 2Fg (X) s @)
' - B,A,cB,....co.ey cB B B B
Let As® (i.e.,) 1= Brmmiasl h2 *2
TAn (x)STB(x), IAn (X)SlB(X), FAn (x) > FB(x)
max(TAl (x), TA2 (X)yeee .TAn (x)) <T g(x)
max(ly (X), 15 (X)d p (X)) (X)
A1 A2 An B
min(F'Al (x),FAz(x) ....... th (x))zFB(x)
UAi:<x,max(T Ta T )omax(ly 0 0y ), min(F, ,Fy ,..F )>
A AT A A AT A ATATTAY) SUA B by (1)

3.2. Proposition:
Let A; ’s and B be Fuzzy neutrosophic sets in X (i€J) then <4 for each '’ =8

=Tg (x) < TAl (x), I'g (x) < IAl (x), Fg (x) > Fp1 (x)
TB(X)STAZ(X), IB(x)slAz(x), FB(X)ZFA2 (x)

3.3. Proposition:

Let Ai’s be Fuzzy neutrosophic sets in X J€J then ® (UA ) =nA” aD(nA )" -UAT

Proof:

Uﬁ:<x,max(TAl ,TA2 ,...T% ),max(lAl,lA2 ,...|An ),min(FAl,FAz ,...FAn )>
(Upﬁ )°:<><,min(|=A1,|:A2 ,...F% ),1—rT‘ax(IA1,IA2 ,...|% ),max(TAl ,TA2 ,...TAn )>
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Proof of (ii) is similar.

3.4. Proposition:

Let A and B be Fuzzy neutrosophic sets then A<B<B°<A®
Proof:

Let A and B be Fuzzy neutrosophic sets then
A c BoTp(X)STg (x),1 4 (x) <Ig(x),Fp(x) 2 Fg (x)

S Fg (X)sFp (x)1-15 (X)<1-1 4 (X), Tg (X)=T 4 (X)

c C
=B A

3.5. Proposition:

C 07
Let A be a Fuzzy neutrosophic set in X then (+°) -

Proof:
Let A= (*TACHTA®FAM) he o Fuzzy neutrosophic set in X then *“=(<FaCI1A0OTA0)

Hence (AC)C: <X’TA(X)r'A(X)~FA(X)> =A
Note:

c C
(ON) :1N Y(:I-N) :ON

3.6. Proposition:

Let A be a Fuzzy neutrosophic set in X then the following properties hold:

(i) A0y =A (i) Auly =1y (iii) An0y =0y (iv) Ay =A
Proof:

Let A= (XTAT A0 FA () ’ 0 =(%.0,0,1) 1 =(x.11,0)
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(i) AUy :<x,max(TA(x),0),max(lA(x),O),min(FA(x),l)>
=(XTAC0T A (0 FA(0)

=A

(i) Auly = <x,max(TA(x),l),max(IA(x),l),min(FA(x),O)>

=(x110) =1

(iii) AmON = <x,min(TA(x),0),min(IA(x),O),max(FA(x),l)>

= (x0,01) = 0y

(V)ANly = <x,min(TA(x),1),min(IA(x),l),max(FA(x),O)>

- <X’TA(X)’IA(X)'FA(X)> - A
3.7. Proposition:
Let A and B be two Fuzzy neutrosophic sets in X then a-e=Aif and only if 8=A
Proof:

Let A and B be two Fuzzy neutrosophic sets in X such that A-B=A. (i.e.)

<:>“'151X(-|—A(X)v TB (x)) = TA(X) , max(1 A(X), IB (x) = |A(X) ,

min(Fp (x), Fg (X)) = Fp (X)

<x,max(TA(x),TB(x)),max(lA(x),IB(x)), min(Fp (x), FB(X))> ST (TA (), 15 (0=1 4 (), Fg (02F5 (%)

= <x,TA(x),IA(x),FA(x)> o BcA
3.8. Proposition:
Let A and B be two Fuzzy neutrosophic sets in X then A\B =B\ A°

Proof:
Let A = (XTACO1 A (0 FA(0) B=(X.Tg ()15 (X).Fg (x))
(AB))=(x,min (T 5 (x), Fig (x)), min(1 ()11 5 (X)), MeX(Fp, (0, Tg (X)) A°=(x,Fp (0,21 5 (x),Tp (9)) ,BS=(x,Fg ().1-15 (), Tg ()

@° VA% ) = {x,min(Fg ().TA (), min(1-1 5 (x),1 A (X)), mex(Tg (x), FA ()

Hence (AB)(X)=(B\A®)(x)

3.9. Proposition:

Let A, B and C be Fuzzy neutrosophic sets in X then

International Journal of Innovative Research and Studies Page 647



May, 2014 www.ijirs.com Vol3 Issue 5

(i) AUB=BUA

(ii) ANB=BNA

(i) Au( BUC)=( AUB)LC

(iv) An( BAC)=( ANB)C

(v) An( BUC)=( ANB)U( ANC)
(vi) Au( BAC)=( AUB)( AUC)
(vii) A\(BUC)=(A\B)(A\C)

(Viii)A\ (B A C) = (A\ B) U (A\C)

4. Fuzzy Neutrosophic Topologicalspaces:

4.1. Definition:

A Fuzzy neutrosophic topology on a nonempty set X is a 7 of Fuzzy neutrosophic sets in X
(i oy 1y e
(i) A\nAger forany Ap,Aper

Satisfying the fOIIOWing aXiOmS (iijuAer foranyarbitraryfamily{Ai:ieJ} er

In this case the pair (X, 7) is called Fuzzy neutrosophic topological space and any Fuzzy
neutrosophic setin 7 is known as Fuzzy neutrosophic open set in X .

4.2. Example:

Let X= {ab,c}tand consider the family 7={0y , InALA2A3AL where
A= {(a,o.8,0.7,o.6),(b,0.6,0.5,0.4) ,(c,o.4,o.7,o.5)}
A,={(2,0.7,0.6,0.4),(b,0.8,0.2,0.3) ,(c,09,03,02)}
A;={(a,08,07,0.4) (b,0.8,0.5,0.3) {c,0.9,0.7,0.2)}

Ay = {(2.07,06,06,(b,06,0.2,04) (c,04,03,05)}

Then (X, 7) is called Fuzzy neutrosophic topological space on X

4.3. Definition:
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The complement A° of a Fuzzy neutrosophic set A in a Fuzzy neutrosophic topological space

(X, 7)) is called a Fuzzy neutrosophic closed set in X.

4.4. Definition:

Let (X, ) be a Fuzzy neutrosophic topological space and A= (*TAA®FAM) pe o Fuzzy

neutrosophic set in X. Then the closure and interior of A are defined by

int(A)=U <{G:G isa fuzzyneutrosopiic opensetin X andGc A}

cl(A)=N <{G:Gisa fuzzyneutrosoplicclosedset in X and A;G}

4.5. Proposition:

Let (X,t) be a Fuzzy neutrosophic topological space over X .Then the following properties

hold (i) oI (A%)=( intA)© (i) intAC=( cl A)°
Proof:

Let A= (XTACT A (). FA(0))

Suppose that the family of Fuzzy neutrosophic open sets G; contained in A are indexed by the

. {<X,TG_ (x), IG- (x), FG- (x)>:ie.]}
family o '

intA = <x,max(TGi (x)), max(lGi (x)), min(FGi (x))>

c
= (intA) = <x,min(F (X)) 1-max (1~ (x)),max(Te. (x))> ...... @) ac_ _
Then we see that 6 6 & AT=(XFA(OLT A (0TA ()

‘.‘Gi c AViel

To. (O<TA(X), g (X) S TA(X), Fg. (X) =2 Fo(x) Viel
i i i

. X Fg. (),1-1g (x)Tg (x) yied ) ) _
We obtain that {< G TG > } is the family of Fuzzy neutrosophic closed

sets containing A° .(i.e.,)

c
cl(A) <X,min FGi (x), min (1 IGi (x)), max(TGi (x))>:ied
:{<x,min Fg. (x)1-max 15 (x),max(Tg, (x))>:ieJ} ....... @)
i i i

c. . c
Hence cl (A )=(intA)

Similarly we can prove (ii).

International Journal of Innovative Research and Studies Page 649



May, 2014 www.ijirs.com Vol3 Issue 5

4.6. Proposition:

Let (X,7,)and (X, 7,) be two Fuzzy neutrosophic topological spaces. Denote
rnn ={AtAcrand A€ T, ihon 71 N7, s g Fuzzy neutrosophic topological space.
Proof:

Obviously v v €707

Let ALA et N, =A,A et , A A e,
riand 7,50 Fuzzy neutrosophic topological spaces on X .Then

ANA ez and ANA e, >ANA €1, NT,| gt {Ai:ie\]}gz'lﬁrz = Acer and

Aer, Viel

Since 71ad 7 5p¢ Fuzzy neutrosophic topological spaces on X

U{AiiieJ}ETl and U{ﬁ3i€3}€f2:>U{'°i:i€‘]}671072 Therefore ©+ 72 is a Fuzzy

neutrosophic topological space.

Remark:

71 Y72 jsnot a Fuzzy neutrosophic topological space can be seen by the following example.
4.7. Example:
Let X={a,b}, a={0N AN Afandr={On N B\ ore

A = {(2,08,07,05),(b,09,03,04)}

B = {(2,05,06,0.3).(b,03,05,07)}

Here vrz “ONINAB) ginee  AuBAnBenur aum js not a Fuzzy neutrosophic topological

space

4.8. Definition:

Let (X:7) pea Fuzzy neutrosophic topological space on X.
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i. A family #<7is called a base for (X:7) if and only if each member of 7 can be

written as the elements of .

ii. A family ¥ <7is called a sub base for (X:7) if and only if the family of finite

intersections of elements in y forms a base for (X, T).In this case the Finite topology

T is said to be generated by vy.
4.9. Proposition:

Let (X,t) be a Fuzzy neutrosophic topological space over X .Then the following properties
hold.

1. Oy, 1n are Fuzzy neutrosophic closed sets over X

2. The intersection of any number of Fuzzy neutrosophic closed sets is a Fuzzy
neutrosophic closed set over X

3. The union of any two Fuzzy neutrosophic closed sets is a Fuzzy neutrosophic closed

set over X

Proof: It is obvious.
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