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§1. Introduction

The concept of neutrosophic rings was introduced by Vasantha Kandasamy and Florentin

Smarandache in [1] where neutrosophic polynomial rings, neutrosophic matrix rings, neutro-

sophic direct product rings, neutrosophic integral domains, neutrosophic unique factorization

domains, neutrosophic division rings, neutrosophic integral quaternions, neutrosophic rings of

real quarternions, neutrosophic group rings and neutrosophic semigroup rings were studied. In

[12], Agboola et al further studied neutrosophic rings. The structure of neutrosophic polynomial

rings was presented. It was shown that division algorithm is generally not true for neutrosophic

polynomial rings and it was also shown that a neutrosophic polynomial ring 〈R⋃ I〉 [x] can-

not be an Integral Domain even if R is an Integral Domain. Also in [12], it was shown that

〈R⋃ I〉 [x] cannot be a unique factorization domain even if R is a unique factorization domain

and it was also shown that every non-zero neutrosophic principal ideal in a neutrosophic poly-

nomial ring is not a neutrosophic prime ideal. The present paper is however devoted to the

study of ideals of neutrosophic rings and neutrosophic quotient rings are also studied.

§2. Preliminaries and Results

For details about neutrosophy and neutrosophic rings, the reader should see [1] and [12].

Definition 2.1 Let (R, +, ·) be any ring. The set
〈
R
⋃

I
〉

= {a + bI : a, b ∈ R}

is called a neutrosophic ring generated by R and I under the operations of R, where I is the

neutrosophic element and I2 = I.
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If 〈R⋃ I〉 = 〈Zn

⋃
I〉 with n < ∞, then o(〈Zn ∪ I〉) = n2. Such a 〈R⋃ I〉 is said to be a

commutative neutrosophic ring with unity if rs = sr for all r, s ∈ 〈R⋃ I〉 and 1 ∈ 〈R⋃ I〉.

Definition 2.2 Let 〈R⋃ I〉 be a neutrosophic ring. A proper subset P of 〈R⋃ I〉 is said to be

a neutrosophic subring of 〈R⋃ I〉 if P = 〈S ∪ nI〉, where S is a subring of R and n an integer,

P is said to be generated by S and nI under the operations of R.

Definition 2.3 Let 〈R⋃ I〉 be a neutrosophic ring and let P be a proper subset of 〈R⋃ I〉
which is just a ring. Then P is called a subring.

Definition 2.4 Let T be a non-empty set together with two binary operations + and ·. T is

said to be a pseudo neutrosophic ring if the following conditions hold:

(1) T contains elements of the form a + bI, where a and b are real numbers and b 6= 0 for

at least one value;

(2) (T,+) is an abelian group;

(3) (T, ·) is a semigroup;

(4) ∀x, y, z ∈ T , x(y + z) = xy + xz and (y + z)x = yx + zx.

Definition 2.5 Let 〈R⋃ I〉 be any neutrosophic ring. A non-empty subset P of 〈R⋃ I〉 is said

to be a neutrosophic ideal of 〈R⋃ I〉 if the following conditions hold:

(1) P is a neutrosophic subring of 〈R⋃ I〉;
(2) for every p ∈ P and r ∈ 〈R⋃ I〉, rp ∈ P and pr ∈ P .

If only rp ∈ P , we call P a left neutrosophic ideal and if only pr ∈ P , we call P a right

neutrosophic ideal. When 〈R⋃ I〉 is commutative, there is no distinction between rp and pr

and therefore P is called a left and right neutrosophic ideal or simply a neutrosophic ideal of

〈R⋃ I〉.

Definition 2.6 Let 〈R⋃ I〉 be a neutrosophic ring and let P be a pseudo neutrosophic subring

of 〈R⋃ I〉. P is said to be a pseudo neutrosophic ideal of 〈R⋃ I〉 if ∀p ∈ P and r ∈ 〈R⋃ I〉,
rp, pr ∈ P .

Example 2.7 Let 〈Z ∪ I〉 be a neutrosophic ring of integers and let P = 〈nZ ∪ I〉 for a positive

integer n. Then P is a neutrosophic ideal of 〈Z ∪ I〉.

Example 2.8 Let 〈R⋃ I〉 =







 x y

0 z


 : x, y, z ∈ 〈R ∪ I〉




 be the neutrosophic ring of 2×2

matrices and let P =







 x y

0 0


 : x, y ∈ 〈R ∪ I〉




. Then P is a neutrosophic ideal of 〈Z ∪ I〉.

Theorem 2.9 Let 〈Zp ∪ I〉 be a neutrosophic ring of integers modulo p, where p is a prime

number. Then:

(1) 〈Zp ∪ I〉 has no neutrosophic ideals and

(2) 〈Zp ∪ I〉 has only one pseudo neutrosophic ideal of order p.



Neutrosophic Rings II 3

Proposition 2.10 Let P , J and Q be neutrosophic ideals (resp. pseudo neutrosophic ideals)

of a neutrosophic ring 〈R ∪ I〉. Then

(1) P + J is a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈R ∪ I〉;
(2) PJ is a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈R ∪ I〉;
(3) P ∩ J is a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈R ∪ I〉;
(4) P (JQ) = (PJ)Q;

(5) P (J + Q) = PJ + PQ;

(6) (J + Q)P = JP + QP .

Proof The proof is the same as in the classical ring. �

Proposition 2.11 Let 〈R ∪ I〉 be a neutrosophic ring and let P be a subset of 〈R ∪ I〉 t. Then

P is a neutrosophic ideal (resp. pseudo neutrosophic ideal) iff the following conditions hold:

(1) P 6= ∅;
(2) a, b ∈ P ⇒ a − b ∈ P ;

(3) a ∈ P, r ∈ 〈R ∪ I〉 ⇒ ra, ar ∈ P .

Proof the proof is the same as in the classical ring. �

Proposition 2.12 Let 〈R ∪ I〉 be any neutrosophic ring. Then 〈R ∪ I〉 and < 0 > are neutro-

sophic ideals of 〈R ∪ I〉.

Proposition 2.13 Let 〈R ∪ I〉 be a neutrosophic ring with unity (no unit in 〈R ∪ I〉 since

I−1 does not exist in 〈R ∪ I〉) and let P be a neutrosophic ideal of 〈R ∪ I〉. If 1 ∈ P then

P = 〈R ∪ I〉.

Proposition 2.14 Let 〈R ∪ I〉 be a neutrosophic ring with unity (no unit in 〈R ∪ I〉 since I−1

does not exist in 〈R ∪ I〉) and let P be a pseudo neutrosophic ideal of 〈R ∪ I〉. If 1 ∈ P then

P 6= 〈R ∪ I〉.

Proof Suppose that P is a pseudo neutrosophic ideal of the neutrosophic ring 〈R ∪ I〉 with

unity and suppose that 1 ∈ P . Let r be an arbitrary element of 〈R ∪ I〉. Then by the definition

of P , r.1 = r should be an element of P but since P is not a neutrosophic subring of 〈R ∪ I〉,
there exist some elements b = x + yI with x, y 6= 0 in 〈R ∪ I〉 which cannot be found in P .

Hence P 6= 〈R ∪ I〉. �

Proposition 2.15 Let 〈R ∪ I〉 be a neutrosophic ring and let a = x + yI be a fixed element of

〈R ∪ I〉. Suppose that P = {ra : r ∈ 〈R ∪ I〉} is a subset of 〈R ∪ I〉.

(1) If x, y 6= 0, then P is a left neutrosophic ideal of 〈R ∪ I〉;
(2) If x = 0, then P is a left pseudo neutrosophic ideal of 〈R ∪ I〉.

Proof (1) is clear. For (2), if x = 0 then each element of P is of the form sI for some

s ∈ R. Hence P = {0, sI} which is a left pseudo neutrosophic ideal of 〈R ∪ I〉. �
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Theorem 2.16 Every ideal of a neutrosophic ring 〈R ∪ I〉 is either neutrosophic or pseudo

neutrosophic.

Proof Suppose that P is any ideal of 〈R ∪ I〉. If P 6= (0) or P 6= 〈R ∪ I〉, then there exists

a subring S of R such that for a positive integer n, P =< S ∪nI >. Let p ∈ P and r ∈ 〈R ∪ I〉.
By definition of P , rp, pr ∈ P and the elements rp and pr are clearly of the form a + bI with

at least b 6= 0. �

Definition 2.17 Let 〈R ∪ I〉 be a neutrosophic ring.

(1) If P is a neutrosophic ideal of 〈R ∪ I〉 generated by an element r = a + bI ∈ 〈R ∪ I〉
with a, b 6= 0, then P is called a neutrosophic principal ideal of 〈R ∪ I〉, denoted by (r).

(2) If P is a pseudo neutrosophic ideal of 〈R ∪ I〉 generated by an element r = aI ∈ 〈R ∪ I〉
with a 6= 0, then P is called a pseudo neutrosophic principal ideal of 〈R ∪ I〉, denoted by (r).

Proposition 2.18 Let 〈R ∪ I〉 be a neutrosophic ring and let r = a+bI ∈ 〈R ∪ I〉 with a, b 6= 0.

(1) (r) is the smallest neutrosophic ideal of 〈R ∪ I〉 containing r;

(2) Every pseudo neutrosophic ideal of 〈R ∪ I〉 is contained in some neutrosophic ideal of

〈R ∪ I〉.

Proposition 2.19 Every pseudo neutrosophic ideal of 〈Z ∪ I〉 is principal.

Definition 2.20 Let 〈R ∪ I〉 be a neutrosophic ring and let P be a neutrosophic ideal (resp.

pseudo neutrosophic ideal) of 〈R ∪ I〉.

(1) P is said to be maximal if for any neutrosophic ideal (resp. pseudo neutrosophic ideal)

J of 〈R ∪ I〉 such that P ⊆ J we have either J = M or J = 〈R ∪ I〉.
(2) P is said to be a prime ideal if for any two neutrosophic ideals (resp. pseudo neutro-

sophic ideals) J and Q of 〈R ∪ I〉 such that JQ ⊆ P we have either J ⊆ P or Q ⊆ P .

Proposition 2.21 Let 〈R ∪ I〉 be a commutative neutrosophic ring with unity and let P be a

neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈R ∪ I〉. Then P is prime iff xy ∈ P

with x and y in 〈R ∪ I〉 implies that either x ∈ P or y ∈ P .

Example 2.22 In 〈Z ∪ I〉 the neutrosophic ring of integers:

(1) (nI) where n is a positive integer is a pseudo netrosophic principal ideal.

(2) (I) is the only maximal pseudo neutrosophic ideal.

(3) (0) is the only prime neutrosophic ideal (resp. prime pseudo neutrosophic ideal).

Definition 2.23 Let 〈R ∪ I〉 be a commutative neutrosophic ring and let x = a + bI be an

element of 〈R ∪ I〉 with a, b ∈ R.

(1) If a, b 6= 0 and there exists a positive integer n such that xn = 0 then x is called a

strong neutrosophic nilpotent element of 〈R ∪ I〉.
(2) If a = 0, b 6= 0 and there exists a positive integer n such that xn = 0 then x is called a

weak neutrosophic nilpotent element of 〈R ∪ I〉.
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(3) If b = 0 and there exists a positive integer n such that xn = 0 then x is called an

ordinary nilpotent element of 〈R ∪ I〉.

Example 2.24 In the neutrosophic ring 〈Z4 ∪ I〉 of integers modulo 4, 0 and 2 are ordinary

nilpotent elements, 2I is a weak neutrosophic nilpotent element and 2 + 2I is a strong neutro-

sophic nilpotent element.

Proposition 2.25 Let 〈R ∪ I〉 be a commutative neutrosophic ring.

(1) The set of all strong neutrosophic nilpotent elements of 〈R ∪ I〉 is not a neutrosophic

ideal.

(2) The set of all weak neutrosophic nilpotent elements of 〈R ∪ I〉 is not a neutrosophic

ideal.

(3) The set of all nilpotent (ordinary, strong and weak neutrosophic) elements of the com-

mutative neutrosophic ring 〈R ∪ I〉 is a neutrosophic ideal of 〈R ∪ I〉.

Definition 2.26 Let 〈R ∪ I〉 be a neutrosophic ring and let P be a neutrosophic ideal of 〈R ∪ I〉.
Let 〈R ∪ I〉 /P be a set defined by

〈R ∪ I〉 /P = {r + P : r ∈ 〈R ∪ I〉}.

If addition and multiplication in 〈R ∪ I〉 /P are defined by

(r + P ) + (s + P ) = (r + s) + P,

(r + P )(s + P ) = (rs) + P, r, p ∈ 〈R ∪ I〉 ,

it can be shown that 〈R ∪ I〉 /P is a neutrosophic ring called the neutrosophic quotient ring with

P as an additive identity.

Definition 2.27 Let 〈R ∪ I〉 be a neutrosophic ring and let P be a subset of 〈R ∪ I〉.

(1) If P is a neutrosophic ideal of 〈R ∪ I〉 and 〈R ∪ I〉 /P is just a ring, then 〈R ∪ I〉 /P

is called a false neutrosophic quotient ring;

(2) If P is a pseudo neutrosophic ideal of 〈R ∪ I〉 and 〈R ∪ I〉 /P is a neutrosophic ring,

then 〈R ∪ I〉 /P is called a pseudo neutrosophic quotient ring;

(3) If P is a pseudo neutrosophic ideal of 〈R ∪ I〉 and 〈R ∪ I〉 /P is just a ring, then

〈R ∪ I〉 /P is called a false pseudo neutrosophic quotient ring.

Example 2.28 Let < Z6 ∪ I >= {0, 1, 2, 3, 4, 5, I, 21, 3I, 4I, 5I, 1+ I, 1 + 2I, 1 + 3I, 1 + 4I, 1 +

5I, 2 + I, 2 + 2I, 2 +3I, 2+ 4I, 2+5I, 3 + I, 3 +2I, 3+3I, 3+4I, 3+5I, 4+ I, 4+2I, 4+3I, 4+

4I, 4 + 5I, 5 + I, 5 + 2I, 5 + 3I, 5 + 4I, 5 + 5I} be a neutrosophic ring of integers modulo 6.

(1) If P = {0, 2, I, 2I, 3I, 4I, 5I, 2+I, 2+2I, 2+3I, 2+4I, 2+5I}, then P is a neutrosophic

ideal of < Z6 ∪ I > but < Z6 ∪ I > /P = {P, 1 + P, 3 + P, 4 + P, 5 + P} is just a ring and thus

< Z6 ∪ I > /P is a false neutrosophic quotient ring.

(2) If P = {0, 2I, 4I}, then P is a pseudo neutrosophic ideal of < Z6∪I > and the quotient

ring
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< Z6 ∪ I > /P = {P, 1 + P, 2 + P, 3 + P, 4 + P, 5 + P, I + P, (1 + I) + P, (2 + I) + P, (3 + I) +

P, (4 + I) + P, (5 + I) + P} is a pseudo neutrosophic quotient ring.

(3) If P = {0, I, 2I, 3I, 4I, 5I}, then P is a pseudo neutrosophic ideal and the quotient

ring. < Z6 ∪ I > /P = {P, 1 + P, 2 + P, 3 + P, 4 + P, 5 + P} is a false pseudo neutrosophic

quotient ring.

Definition 2.29 Let 〈R ∪ I〉 and 〈S ∪ I〉 be any two neutrosophic rings. The mapping φ :

〈R ∪ I〉 → 〈S ∪ I〉 is called a neutrosophic ring homomorphism if the following conditions hold:

(1) φ is a ring homomorphism;

(2) φ(I) = I.

If in addition φ is both 1 − 1 and onto, then φ is called a neutrosophic isomorphism and

we write 〈R ∪ I〉 ∼= 〈S ∪ I〉.
The set {x ∈ 〈R ∪ I〉 : φ(x) = 0} is called the kernel of φ and is denoted by Kerφ.

Theorem 2.30 Let φ : 〈R ∪ I〉 → 〈S ∪ I〉 be a neutrosophic ring homomorphism and let

K = Kerφ be the kernel of φ. Then:

(1) K is always a subring of 〈R ∪ I〉;
(2) K cannot be a neutrosophic subring of 〈R ∪ I〉;
(3) K cannot be an ideal of 〈R ∪ I〉.

Example 2.31 Let 〈Z ∪ I〉 be a neutrosophic ring of integers and let P = 5Z∪I. It is clear that

P is a neutrosophic ideal of 〈Z ∪ I〉 and the neutrosophic quotient ring 〈Z ∪ I〉 /P is obtained

as

〈Z ∪ I〉 /P = {P, 1 + P, 2 + P, 3 + P, 4 + P, I + P, 2I + P, 3I + P, 4I + P,

(1 + I) + P, (1 + 2I) + P, (1 + 3I) + P, (1 + 4I) + P, (2 + I) + P,

(2 + 2I) + P, (2 + 3I) + P, (2 + 4I) + P, (3 + I) + P, (3 + 2I) + P,

(3 + 3I) + P, (3 + 4I) + P, (4 + I) + P, (4 + 2I) + P, (4 + 3I) + P, (4 + 4I) + P}.

The following can easily be deduced from the example:

(1) 〈Z ∪ I〉 /P is neither a field nor an integral domain.

(2) 〈Z ∪ I〉 /P and the neutrosophic ring < Z5 ∪ I > of integers modulo 5 are structurally

the same but then

(3) The mapping φ : 〈Z ∪ I〉 → 〈Z ∪ I〉 /P defined by φ(x) = x + P for all x ∈ 〈Z ∪ I〉 is

not a neutrosophic ring homomorphism and consequently 〈Z ∪ I〉 6∼= 〈Z ∪ I〉 /P 6∼=< Z5 ∪ I >.

These deductions are recorded in the next proposition.

Proposition 2.32 Let 〈Z ∪ I〉 be a neutrosophic ring of integers and let P = 〈nZ ∪ I〉 where

n is a positive integer. Then:

(1) 〈Z ∪ I〉 /P is a neutrosophic ring;

(2) 〈Z ∪ I〉 /P is neither a field nor an integral domain even if n is a prime number;

(3) 〈Z ∪ I〉 /P 6∼= 〈Zn ∪ I〉.
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Theorem 2.33 If P is a pseudo neutrosophic ideal of the neutrosophic ring 〈Zn ∪ I〉 of integers

modulo n, then

〈Zn ∪ I〉 /P ∼= Zn.

Proof Let P = {0, I, 2I, 3I, · · · , (n− 3)I, (n− 2)I, (n− 1)I}. It is clear that P is a pseudo

neutrosophic ideal of 〈Zn ∪ I〉 and 〈Zn ∪ I〉 /P is a false neutrosophic quotient ring given by

〈Zn ∪ I〉 /P = {P, 1 + P, 2 + P, 3 + P, · · · , (n − 3) + P, (n − 2) + P, (n − 1) + P} ∼= Zn. �

Proposition 2.34 Let φ : 〈R ∪ I〉 → 〈S ∪ I〉 be a neutrosophic ring homomorphism.

(1) The set φ(〈R ∪ I〉) = {φ(r) : r ∈ 〈R ∪ I〉} is a neutrosophic subring of 〈S ∪ I〉;
(2) φ(−r) = −φ(r) ∀r ∈ 〈R ∪ I〉;
(3) If 0 is the zero of 〈R ∪ I〉, then φ(0) is the zero of φ(〈R ∪ I〉);
(4) If P is a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈R ∪ I〉, then φ(P ) is

a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈S ∪ I〉;
(5) If J is a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈S ∪ I〉, then φ−1(J)

is a neutrosophic ideal (resp. pseudo neutrosophic ideal) of 〈R ∪ I〉;
(6) If 〈R ∪ I〉 has unity 1 and φ(1) 6= 0 in 〈S ∪ I〉, then φ(1) is the unity φ(〈R ∪ I〉);
(7) If 〈R ∪ I〉 is commutative, then φ(〈R ∪ I〉) is commutative.

Proof The proof is the same as in the classical ring. �
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