A new additive function and the F. Smarandache function

Yanchun Guo
Department of Mathematics, Xianyang Normal University
Xianyang, Shaanxi, P.R.China

Abstract

For any positive integer n, we define the arithmetical function $F(n)$ as $F(1)=0$. If $n>1$ and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the prime power factorization of n, then $F(n)=\alpha_{1} p_{1}+$ $\alpha_{2} p_{2}+\cdots+\alpha_{k} p_{k}$. Let $S(n)$ be the Smarandache function. The main purpose of this paper is using the elementary method and the prime distribution theory to study the mean value properties of $(F(n)-S(n))^{2}$, and give a sharper asymptotic formula for it.

Keywords Additive function, Smarandache function, Mean square value, Elementary method, Asymptotic formula.

§1. Introduction and result

Let $f(n)$ be an arithmetical function, we call $f(n)$ as an additive function, if for any positive integers m, n with $(m, n)=1$, we have $f(m n)=f(m)+f(n)$. We call $f(n)$ as a complete additive function, if for any positive integers r and $s, f(r s)=f(r)+f(s)$. In elementary number theory, there are many arithmetical functions satisfying the additive properties. For example, if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ denotes the prime power factorization of n, then function $\Omega(n)=$ $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ and logarithmic function $f(n)=\ln n$ are two complete additive functions, $\omega(n)=k$ is an additive function, but not a complete additive function. About the properties of the additive functions, one can find them in references [1], [2] and [5].

In this paper, we define a new additive function $F(n)$ as follows: $F(1)=0$; If $n>1$ and $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ denotes the prime power factorization of n, then $F(n)=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{k} p_{k}$. It is clear that this function is a complete additive function. In fact if $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and $n=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$, then we have $m n=p_{1}^{\alpha_{1}+\beta_{1}} p_{2}^{\alpha_{2}+\beta_{2}} \cdots p_{k}^{\alpha_{k}+\beta_{k}}$. Therefore, $F(m n)=$ $\left(\alpha_{1}+\beta_{1}\right) p_{1}+\left(\alpha_{2}+\beta_{2}\right) p_{2}+\cdots+\left(\alpha_{k}+\beta_{k}\right) p_{k}=F(m)+F(n)$. So $F(n)$ is a complete additive function. Now we let $S(n)$ be the Smarandache function. That is, $S(n)$ denotes the smallest positive integer m such that n divide $m!$, or $S(n)=\min \{m: n \mid m!\}$. About the properties of $S(n)$, many authors had studied it, and obtained a series results, see references [7], [8] and [9]. The main purpose of this paper is using the elementary method and the prime distribution theory to study the mean value properties of $(F(n)-S(n))^{2}$, and give a sharper asymptotic formula for it. That is, we shall prove the following:

Theorem. Let N be any fixed positive integer. Then for any real number $x>1$, we
have the asymptotic formula

$$
\sum_{n \leq x}(F(n)-S(n))^{2}=\sum_{i=1}^{N} c_{i} \cdot \frac{x^{2}}{\ln ^{i+1} x}+O\left(\frac{x^{2}}{\ln ^{N+2} \sqrt{x}}\right)
$$

where $c_{i}(i=1,2, \cdots, N)$ are computable constants, and $c_{1}=\frac{\pi^{2}}{6}$.

§2. Proof of the theorem

In this section, we use the elementary method and the prime distribution theory to complete the proof of the theorem. We using the idea in reference [4]. First we define four sets A, B, C, D as follows: $A=\left\{n, n \in N, n\right.$ has only one prime divisor p such that $p \mid n$ and $p^{2} \nmid n$, $\left.p>n^{\frac{1}{3}}\right\} ; B=\left\{n, n \in N, n\right.$ has only one prime divisor p such that $p^{2} \mid n$ and $\left.p>n^{\frac{1}{3}}\right\}$; $C=\left\{n, n \in N, n\right.$ has two deferent prime divisors p_{1} and p_{2} such that $\left.p_{1} p_{2} \mid n, p_{2}>p_{1}>n^{\frac{1}{3}}\right\} ;$ $D=\left\{n, n \in N\right.$, any prime divisor p of n satisfying $\left.p \leq n^{\frac{1}{3}}\right\}$, where N denotes the set of all positive integers. It is clear that from the definitions of A, B, C and D we have

$$
\begin{align*}
\sum_{n \leq x}(F(n)-S(n))^{2}= & \sum_{\substack{n \leq x \\
n \in A}}(F(n)-S(n))^{2}+\sum_{\substack{n \leq x \\
n \in B}}(F(n)-S(n))^{2} \\
& +\sum_{\substack{n \leq x \\
n \in C}}(F(n)-S(n))^{2}+\sum_{\substack{n \leq x \\
n \in D}}(F(n)-S(n))^{2} \\
\equiv & W_{1}+W_{2}+W_{3}+W_{4} . \tag{1}
\end{align*}
$$

Now we estimate W_{1}, W_{2}, W_{3} and W_{4} in (1) respectively. Note that $F(n)$ is a complete additive function, and if $n \in A$ with $n=p k$, then $S(n)=S(p)=p$, and any prime divisor q of k satisfying $q \leq n^{\frac{1}{3}}$, so $F(k) \leq n^{\frac{1}{3}} \ln n$. From the Prime Theorem (See Chapter 3, Theorem 2 of [3]) we know that

$$
\begin{equation*}
\pi(x)=\sum_{p \leq x} 1=\sum_{i=1}^{k} c_{i} \cdot \frac{x}{\ln ^{i} x}+O\left(\frac{x}{\ln ^{k+1} x}\right) \tag{2}
\end{equation*}
$$

where $c_{i}(i=1,2, \cdots, k)$ are computable constants, and $c_{1}=1$. By these we have the estimate:

$$
\begin{align*}
W_{1} & =\sum_{\substack{n \leq x \\
n \in A}}(F(n)-S(n))^{2}=\sum_{\substack{p k \leq x \\
(p k) \in A}}(F(p k)-p)^{2} \\
& =\sum_{\substack{p k \leq x \\
(p k) \in A}} F^{2}(k) \ll \sum_{k \leq \sqrt{x}} \sum_{k<p \leq \frac{x}{k}}(p k)^{\frac{2}{3}} \ln ^{2}(p k) \leq(\ln x)^{2} \sum_{k \leq \sqrt{x}} k^{\frac{2}{3}} \sum_{k<p \leq \frac{x}{k}} p^{\frac{2}{3}} \\
& \ll(\ln x)^{2} \sum_{k \leq \sqrt{x}} k^{\frac{2}{3}}\left(\frac{x}{k}\right)^{\frac{5}{3}} \frac{1}{\ln \frac{x}{k}} \ll x^{\frac{5}{3}} \ln ^{2} x . \tag{3}
\end{align*}
$$

If $n \in B$, then $n=p^{2} k$, and note that $S(n)=S\left(p^{2}\right)=2 p$, we have the estimate

$$
\begin{align*}
W_{2} & =\sum_{\substack{n \leq x \\
n \in B}}(F(n)-S(n))^{2}=\sum_{\substack{p^{2} k \leq x \\
p>k}}\left(F\left(p^{2} k\right)-2 p\right)^{2} \\
& =\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p \leq \sqrt{\frac{x}{k}}} F^{2}(k) \ll \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p \leq \sqrt{\frac{x}{k}}} k^{2} \\
& \ll \sum_{k \leq x^{\frac{1}{3}}} \frac{k^{2} \cdot x^{\frac{1}{2}}}{k^{\frac{1}{2}} \ln x} \ll \frac{x^{\frac{4}{3}}}{\ln x} . \tag{4}
\end{align*}
$$

If $n \in D$, then $F(n) \leq n^{\frac{1}{3}} \ln n$ and $S(n) \leq n^{\frac{1}{3}} \ln n$, so we have

$$
\begin{equation*}
W_{4}=\sum_{\substack{n \leq x \\ n \in D}}(F(n)-S(n))^{2} \ll \sum_{n \leq x} n^{\frac{2}{3}} \ln ^{2} n \ll x^{\frac{5}{3}} \ln ^{2} x \tag{5}
\end{equation*}
$$

Finally, we estimate main term W_{3}. Note that $n \in C, n=p_{1} p_{2} k, p_{2}>p_{1}>n^{\frac{1}{3}}>k$. If $k<p_{1}<n^{\frac{1}{3}}$, then in this case, the estimate is exact same as in the estimate of W_{1}. If $k<p_{1}<p_{2}<n^{\frac{1}{3}}$, in this case, the estimate is exact same as in the estimate of W_{4}. So by (2) we have

$$
\begin{align*}
W_{3}= & \sum_{\substack{n \leq x \\
n \in C}}(F(n)-S(n))^{2}=\sum_{\substack{p_{1} p_{2} k \leq x \\
p_{2}>p_{1}>k}}\left(F\left(p_{1} p_{2} k\right)-p_{2}\right)^{2}+O\left(x^{\frac{5}{3}} \ln ^{2} x\right) \\
= & \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{2} \leq \frac{x}{p_{1} k}}\left(F^{2}(k)+2 p_{1} F(k)+p_{1}^{2}\right)+O\left(x^{\frac{5}{3}} \ln ^{2} x\right) \\
= & \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1}<p_{2} \leq \frac{x}{p_{1} k}} p_{1}^{2}+O\left(\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1}<p_{2} \leq \frac{x}{p_{1} k}} k p_{1}\right)+O\left(x^{\frac{5}{3}} \ln ^{2} x\right) \\
= & \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2}\left(\sum_{i=1}^{N} c_{i} \cdot \frac{x}{p_{1} k \ln ^{i} \frac{x}{p_{1} k}}+O\left(\frac{x}{p_{1} k \ln ^{N+1} x}\right)\right)+O\left(x^{\frac{5}{3}} \ln ^{2} x\right) \\
& -\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \sum_{p_{2} \leq p_{1}} 1+O\left(\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1}<p_{2} \leq \frac{x}{p_{1} k}} k p_{1}\right) . \tag{6}
\end{align*}
$$

Note that $\zeta(2)=\frac{\pi^{2}}{6}$, from the Abel's identity (See Theorem 4.2 of [6]) and (2) we have

$$
\begin{align*}
& \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \sum_{p \leq p_{1}} 1=\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2}\left[\sum_{i=1}^{N} \frac{c_{i} \cdot p_{1}}{\ln ^{i} p_{1}}+O\left(\frac{p_{1}}{\ln ^{N+1} p_{1}}\right)\right] \\
= & \sum_{i=1}^{N} \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \frac{c_{i} \cdot p_{1}^{3}}{\ln ^{i} p_{1}}+O\left(\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \frac{p_{1}^{3}}{\ln ^{N+1} p_{1}}\right) \\
= & \sum_{i=1}^{N} \frac{d_{i} \cdot x^{2}}{\ln ^{i+1} x}+O\left(\frac{2^{N} \cdot x^{2}}{\ln ^{N+2} x}\right), \tag{7}
\end{align*}
$$

where $d_{i}(i=1,2, \cdots, N)$ are computable constants, and $d_{1}=\frac{\pi^{2}}{6}$.

$$
\begin{gather*}
\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1}<p_{2} \leq \frac{x}{p_{1} k}} k p_{1} \ll \sum_{k \leq x^{\frac{1}{3}}} k \sum_{p_{1} \leq \sqrt{\frac{x}{k}}} p_{1} \cdot \frac{x}{p_{1} k \ln x} \ll \sum_{k \leq x^{\frac{1}{3}}} \frac{x^{\frac{3}{2}}}{\sqrt{k} \ln ^{2} x} \ll \frac{x^{\frac{5}{3}}}{\ln ^{2} x} . \tag{8}\\
\sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \frac{p_{1} x}{k \ln ^{N+1} x} \ll \sum_{k \leq x^{\frac{1}{3}}} \frac{x^{2}}{k^{2} \ln ^{N+2} x} \ll \frac{x^{2}}{\ln ^{N+2} x} . \tag{9}
\end{gather*}
$$

From the Abel's identity and (2) we also have the estimate

$$
\begin{align*}
& \sum_{k \leq x^{\frac{1}{3}}} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \frac{x}{p_{1} k \ln \frac{x}{p_{1} k}}=\sum_{k \leq x^{\frac{1}{3}}} \frac{1}{k} \sum_{k<p_{1} \leq \sqrt{\frac{x}{k}}} \frac{x p_{1}}{\ln \frac{x}{k p_{1}}} \\
= & \sum_{i=1}^{N} b_{i} \cdot \frac{x^{2}}{\ln ^{i+1} x}+O\left(\frac{x^{2}}{\ln ^{N+1} x}\right) \tag{10}
\end{align*}
$$

where $b_{i}(i=1,2, \cdots, N)$ are computable constants, and $b_{1}=\frac{\pi^{2}}{3}$.
Now combining (1), (3), (4), (5), (6), (7), (8)and(9) we may immediately deduce the asymptotic formula:

$$
\sum_{n \leq x}(F(n)-S(n))^{2}=\sum_{i=1}^{N} a_{i} \cdot \frac{x^{2}}{\ln ^{i+1} x}+O\left(\frac{x^{2}}{\ln ^{N+2} \sqrt{x}}\right)
$$

where $a_{i}(i=1,2, \cdots, N)$ are computable constants, and $a_{1}=b_{1}-d_{1}=\frac{\pi^{2}}{6}$.
This completes the proof of Theorem.

References

[1] C.H.Zhong, A sum related to a class arithmetical functions, Utilitas Math., 44(1993), 231-242.
[2] H.N.Shapiro, Introduction to the theory of numbers, John Wiley and Sons, 1983.
[3] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem (in Chinese), Shanghai Science and Technology Press, Shanghai, 1988.
[4] Xu Zhefeng, On the value distribution of the Smarandache function, Acta Mathematica Sinica (in Chinese), 49(2006), No.5, 1009-1012.
[5] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
[6] Tom M. Apostol. Introduction to Analytic Number Theory, Springer-Verlag, 1976.
[7] Yi Yuan and Kang Xiaoyu, Research on Smarandache Problems (in Chinese), High American Press, 2006.
[8] Chen Guohui, New Progress On Smarandache Problems (in Chinese), High American Press, 2007.
[9] Liu Yanni, Li Ling and Liu Baoli, Smarandache Unsolved Problems and New Progress (in Chinese), High American Press, 2008.

