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Abstract For any positive integer n ≥ 3, if n and n + 2 both are primes, then we call that

n and n + 2 are twin primes. In this paper, we using the elementary method to study the

relationship between the twin primes and some arithmetical function, and give a new critical

method for twin primes.
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§1. Introduction and result

For any positive integer n, the Smarandache reciprocal function Sc(n) is defined as the
largest positive integer m such that y | n! for all integers 1 ≤ y ≤ m, and m + 1 † n!. That is,
Sc(n) = max{m : y | n! for all 1 ≤ y ≤ m, and m + 1 † n!}. From the definition of Sc(n) we
can easily deduce that the first few values of Sc(n) are:

Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(6) = 6,

Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(12) = 12,

Sc(13) = 16, Sc(14) = 16, S5(15) = 16, Sc(16) = 16, Sc(17) = 18, · · · · · · .

About the elementary properties of Sc(n), many authors had studied it, and obtained a
series results, see references [2], [3] and [4]. For example, A.Murthy [2] proved the following
conclusion:

If Sc(n) = x and n 6= 3, then x + 1 is the smallest prime greater than n.
Ding Liping [3] proved that for any real number x > 1, we have the asymptotic formula

∑

n≤x

Sc(n) =
1
2
· x2 + O

(
x

19
12

)
.

On the other hand, Jozsef Sandor [5] introduced another arithmetical function P (n) as
follows: P (n) = min{p : n |p!, where p be a prime}. That is, P (n) denotes the smallest prime
p such that n | p!. In fact function P (n) is a generalization of the Smarandache function S(n).
Its some values are: P (1) = 2, P (2) = 2, P (3) = 3, P (4) = 5, P (5) = 5, P (6) = 3, P (7) = 7,
P (8) = 5, P (9) = 7, P (10) = 5, P (11) = 11, · · · . It is easy to prove that for each prime p one
has P (p) = p, and if n is a square-free number, then P (n) = greatest prime divisor of n. If p

be a prime, then the following double inequality is true:

2p + 1 ≤ P (p2) ≤ 3p− 1 (1)
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and

S(n) ≤ P (n) ≤ 2S(n)− 1. (2)

In reference [6], Li Hailong studied the value distribution properties of P (n), and proved
that for any real number x > 1, we have the mean value formula

∑

n≤x

(
P (n)− P (n)

)2
=

2
3
· ζ

(
3
2

)
· x

3
2

lnx
+ O

(
x

3
2

ln2 x

)
,

where P (n) denotes the largest prime divisor of n, and ζ(s) is the Riemann zeta-function.
In this paper, we using the elementary method to study the solvability of an equation

involving the Smarandache reciprocal function Sc(n) and P (n), and give a new critical method
for twin primes. That is, we shall prove the following:

Theorem. For any positive integer n > 3, n and n + 2 are twin primes if and only if n

satisfy the equation

Sc(n) = P (n) + 1. (3)

§2. Proof of the theorem

In this section, we shall prove our theorem directly. First we prove that if n (> 3) and
n + 2 both are primes, then n satisfy the equation (3). In fact this time, from A.Murthy [2] we
know that Sc(n) = n + 1 and P (n) = n, so Sc(n) = P (n) + 1, and n satisfy the equation (3).

Now we prove that if n > 3 satisfy the equation Sc(n) = P (n) + 1, then n and n + 2 both
are primes. We consider n in following three cases:

(A) If n = q be a prime, then P (n) = P (q) = q, and Sc(q) = P (q) + 1 = q + 1, note that
q > 3, so from [2] we know that q + 2 must be a prime. Thus n and n + 2 both are primes.

(B) If n = qα, q be a prime and α ≥ 2, then from the estimate (2) and the properties of
the Smarandache function S(n) we have

P (qα) ≤ 2S (qα)− 1 ≤ 2αq − 1.

On the other hand, from [2] we also have

Sc (qα) ≥ qα + 2, if q ≥ 3; and Sc (2α) ≥ 2α + 1.

If Sc (qα) = P (qα) + 1, then from the above two estimates we have the inequalities

qα + 3 ≤ 2αq (4)

and

2α + 2 ≤ 4α. (5)

It is clear that (4) does not hold if q ≥ 5 (q = 3) and α ≥ 2 (α ≥ 3). If n = 32, then
Sc(9) = 10, P (9) = 7, so we also have Sc(9) 6= P (9) + 1.



58 Fanbei Li No. 2

It is easy to check that the inequality (5) does not hold if α ≥ 4. Sc(2) 6= P (2) + 1,
Sc(4) 6= P (4) + 1, Sc(8) 6= P (8) + 1.

Therefore, if n = qα, where q be a prime and α ≥ 2 be an integer, then n does not satisfy
the equation (3).

(C) If n = pα1
1 · pα2

2 · · · pαk

k , where k ≥ 2 be an integer, pi (i = 1, 2, · · · , k) are primes, and
αi ≥ 1. From the definition of Sc(n) and the inequality (2) we have Sc(n) ≥ n and

P (n) ≤ 2S(n)− 1 = 2 · max
1≤i≤k

{S (pαi
i )} − 1 ≤ 2 · max

1≤i≤k
{αipi} − 1.

So if n satisfy the equation (3), then we have

n ≤ Sc(n) = P (n) + 1 ≤ 2 · S(n) ≤ 2 · max
1≤i≤k

{αipi}.

Let max
1≤i≤k

{αipi} = α · p and n = pα · n1, n1 > 1. Then from the above estimate we have

pα · n1 ≤ 2 · α · p. (6)

Note that n has at least two prime divisors, so n1 ≥ 2, thus (6) does not hold if p ≥ 3 and
α > 1. If p = 2, then n1 ≥ 3. In any case, n does not satisfy the equation (3).

This completes the proof of Theorem.
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