Scientia Magna

Vol. 4 (2008), No. 2, 56-58

A new critical method for twin primes

Fanbei Li

School of Mathematics and Statistics, Inner Mongolia Finance and Economics College, Hohhot 010051, P.R.China

Abstract

For any positive integer $n \geq 3$, if n and $n+2$ both are primes, then we call that n and $n+2$ are twin primes. In this paper, we using the elementary method to study the relationship between the twin primes and some arithmetical function, and give a new critical method for twin primes.

Keywords The Smarandache reciprocal function, critical method for twin primes.

§1. Introduction and result

For any positive integer n, the Smarandache reciprocal function $S_{c}(n)$ is defined as the largest positive integer m such that $y \mid n$! for all integers $1 \leq y \leq m$, and $m+1 \dagger n!$. That is, $S_{c}(n)=\max \{m: y \mid n!$ for all $1 \leq y \leq m$, and $m+1 \dagger n!\}$. From the definition of $S_{c}(n)$ we can easily deduce that the first few values of $S_{c}(n)$ are:

$$
\begin{aligned}
& S_{c}(1)=1, S_{c}(2)=2, S_{c}(3)=3, S_{c}(4)=4, S_{c}(5)=6, S_{c}(6)=6 \\
& S_{c}(7)=10, S_{c}(8)=10, S_{c}(9)=10, S_{c}(10)=10, S_{c}(11)=12, S_{c}(12)=12, \\
& S_{c}(13)=16, S_{c}(14)=16, S_{5}(15)=16, S_{c}(16)=16, S_{c}(17)=18, \cdots \cdots
\end{aligned}
$$

About the elementary properties of $S_{c}(n)$, many authors had studied it, and obtained a series results, see references [2], [3] and [4]. For example, A.Murthy [2] proved the following conclusion:

If $S_{c}(n)=x$ and $n \neq 3$, then $x+1$ is the smallest prime greater than n.
Ding Liping [3] proved that for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} S_{c}(n)=\frac{1}{2} \cdot x^{2}+O\left(x^{\frac{19}{12}}\right)
$$

On the other hand, Jozsef Sandor [5] introduced another arithmetical function $P(n)$ as follows: $P(n)=\min \{p: n \mid p!$, where p be a prime $\}$. That is, $P(n)$ denotes the smallest prime p such that $n \mid p!$. In fact function $P(n)$ is a generalization of the Smarandache function $S(n)$. Its some values are: $P(1)=2, P(2)=2, P(3)=3, P(4)=5, P(5)=5, P(6)=3, P(7)=7$, $P(8)=5, P(9)=7, P(10)=5, P(11)=11, \cdots$. It is easy to prove that for each prime p one has $P(p)=p$, and if n is a square-free number, then $P(n)=$ greatest prime divisor of n. If p be a prime, then the following double inequality is true:

$$
\begin{equation*}
2 p+1 \leq P\left(p^{2}\right) \leq 3 p-1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n) \leq P(n) \leq 2 S(n)-1 \tag{2}
\end{equation*}
$$

In reference [6], Li Hailong studied the value distribution properties of $P(n)$, and proved that for any real number $x>1$, we have the mean value formula

$$
\sum_{n \leq x}(P(n)-\bar{P}(n))^{2}=\frac{2}{3} \cdot \zeta\left(\frac{3}{2}\right) \cdot \frac{x^{\frac{3}{2}}}{\ln x}+O\left(\frac{x^{\frac{3}{2}}}{\ln ^{2} x}\right)
$$

where $\bar{P}(n)$ denotes the largest prime divisor of n, and $\zeta(s)$ is the Riemann zeta-function.
In this paper, we using the elementary method to study the solvability of an equation involving the Smarandache reciprocal function $S_{c}(n)$ and $P(n)$, and give a new critical method for twin primes. That is, we shall prove the following:

Theorem. For any positive integer $n>3, n$ and $n+2$ are twin primes if and only if n satisfy the equation

$$
\begin{equation*}
S_{c}(n)=P(n)+1 . \tag{3}
\end{equation*}
$$

§2. Proof of the theorem

In this section, we shall prove our theorem directly. First we prove that if $n(>3)$ and $n+2$ both are primes, then n satisfy the equation (3). In fact this time, from A.Murthy [2] we know that $S_{c}(n)=n+1$ and $P(n)=n$, so $S_{c}(n)=P(n)+1$, and n satisfy the equation (3).

Now we prove that if $n>3$ satisfy the equation $S_{c}(n)=P(n)+1$, then n and $n+2$ both are primes. We consider n in following three cases:
(A) If $n=q$ be a prime, then $P(n)=P(q)=q$, and $S_{c}(q)=P(q)+1=q+1$, note that $q>3$, so from [2] we know that $q+2$ must be a prime. Thus n and $n+2$ both are primes.
(B) If $n=q^{\alpha}, q$ be a prime and $\alpha \geq 2$, then from the estimate (2) and the properties of the Smarandache function $S(n)$ we have

$$
P\left(q^{\alpha}\right) \leq 2 S\left(q^{\alpha}\right)-1 \leq 2 \alpha q-1 .
$$

On the other hand, from [2] we also have

$$
S_{c}\left(q^{\alpha}\right) \geq q^{\alpha}+2, \text { if } q \geq 3 ; \quad \text { and } \quad S_{c}\left(2^{\alpha}\right) \geq 2^{\alpha}+1
$$

If $S_{c}\left(q^{\alpha}\right)=P\left(q^{\alpha}\right)+1$, then from the above two estimates we have the inequalities

$$
\begin{equation*}
q^{\alpha}+3 \leq 2 \alpha q \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{\alpha}+2 \leq 4 \alpha \tag{5}
\end{equation*}
$$

It is clear that (4) does not hold if $q \geq 5(q=3)$ and $\alpha \geq 2(\alpha \geq 3)$. If $n=3^{2}$, then $S_{c}(9)=10, P(9)=7$, so we also have $S_{c}(9) \neq P(9)+1$.

It is easy to check that the inequality (5) does not hold if $\alpha \geq 4 . \quad S_{c}(2) \neq P(2)+1$, $S_{c}(4) \neq P(4)+1, S_{c}(8) \neq P(8)+1$.

Therefore, if $n=q^{\alpha}$, where q be a prime and $\alpha \geq 2$ be an integer, then n does not satisfy the equation (3).
(C) If $n=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where $k \geq 2$ be an integer, $p_{i}(i=1,2, \cdots, k)$ are primes, and $\alpha_{i} \geq 1$. From the definition of $S_{c}(n)$ and the inequality (2) we have $S_{c}(n) \geq n$ and

$$
P(n) \leq 2 S(n)-1=2 \cdot \max _{1 \leq i \leq k}\left\{S\left(p_{i}^{\alpha_{i}}\right)\right\}-1 \leq 2 \cdot \max _{1 \leq i \leq k}\left\{\alpha_{i} p_{i}\right\}-1
$$

So if n satisfy the equation (3), then we have

$$
n \leq S_{c}(n)=P(n)+1 \leq 2 \cdot S(n) \leq 2 \cdot \max _{1 \leq i \leq k}\left\{\alpha_{i} p_{i}\right\} .
$$

Let $\max _{1 \leq i \leq k}\left\{\alpha_{i} p_{i}\right\}=\alpha \cdot p$ and $n=p^{\alpha} \cdot n_{1}, n_{1}>1$. Then from the above estimate we have

$$
\begin{equation*}
p^{\alpha} \cdot n_{1} \leq 2 \cdot \alpha \cdot p \tag{6}
\end{equation*}
$$

Note that n has at least two prime divisors, so $n_{1} \geq 2$, thus (6) does not hold if $p \geq 3$ and $\alpha>1$. If $p=2$, then $n_{1} \geq 3$. In any case, n does not satisfy the equation (3).

This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] A. Murthy, Smarandache reciprocal function and an elementary inequality, Smarandache Notions Journal, 11(2000), No.1-2-3, 312-315.
[3] Liping Ding, On the Smarandache reciprocal function and its mean value, Scientia Magna, 4(2008), No.1, 120-123.
[4] Zhibin Ren, On an equation involving the Smarandache reciprocal function and its positive integer solutions, Scientia Magna, 4 (2008), No.1, 23-25.
[5] Jozsef Sandor, On certain generalizations of the Smarandache function, Smarandache Notions Journal, 11(2000), No.1-2-3, 202-212.
[6] Hailong Li, A generalization of the Smarandache function, Scientia Magna, 4(2008), No.1, 31-34.

