New Families of Mean Graphs

Selvam Avadayappan
Department of Mathematics of VHNSN College, Virudhunagar - 626 001, Tamil Nadu, India
R. Vasuki
Department of Mathematics of Dr.Sivanthi Aditanar College of Engineering,
Tiruchendur - 628 215, Tamil Nadu, India
Email: selvam_avadayappan@yahoo.co.in, vasukisehar@yahoo.co.in

Abstract

Let $G(V, E)$ be a graph with p vertices and q edges. A vertex labeling of G is an assignment $f: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling f_{S}^{*} for an edge $e=u v$, an integer $m \geq 2$ is defined

 by$$
f_{S}^{*}(e)=\left\lceil\frac{f(u)+f(v)}{m}\right\rceil .
$$

Then f is called a Smarandachely super m-mean labeling if $f(V(G)) \cup\left\{f^{*}(e): e \in E(G)\right\}=$ $\{1,2,3, \ldots, p+q\}$. Particularly, in the case of $m=2$, we know that

$$
f^{*}(e)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean graph if $m=2$. In this paper, we discuss two kinds of constructing larger mean graphs. Here we prove that $\left(P_{m} ; C_{n}\right) m \geq 1, n \geq 3,\left(P_{m} ; Q_{3}\right) m \geq 1,\left(P_{2 n} ; S_{m}\right) m \geq 3, n \geq 1$ and for any $n \geq 1\left(P_{n} ; S_{1}\right),\left(P_{n} ; S_{2}\right)$ are mean graphs. Also we establish that $\left[P_{m} ; C_{n}\right] m \geq 1, n \geq 3$, $\left[P_{m} ; Q_{3}\right] m \geq 1$ and $\left[P_{m} ; C_{n}^{(2)}\right] m \geq 1, n \geq 3$ are mean graphs.

Key Words: Labeling, mean labeling, mean graphs, Smarandachely edge m-labeling, Smarandachely super m-mean labeling, super mean graph.

AMS(2000): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. A path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by C_{n}. The graph $P_{2} \times P_{2} \times P_{2}$ is called the cube and is denoted by Q_{3}. For notations and terminology we follow [1].

[^0]A vertex labeling of G is an assignment $f: V(G) \rightarrow\{1,2,3, \ldots, p+q\}$ be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling f_{S}^{*} for an edge $e=u v$, an integer $m \geq 2$ is defined by

$$
f_{S}^{*}(e)=\left\lceil\frac{f(u)+f(v)}{m}\right\rceil
$$

Then f is called a Smarandachely super m-mean labeling if $f(V(G)) \cup\left\{f^{*}(e): e \in E(G)\right\}=$ $\{1,2,3, \ldots, p+q\}$. Particularly, in the case of $m=2$, we know that

$$
f^{*}(e)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean graph if $m=2$. The mean labeling of the Petersen graph is given in Figure 1.

Figure 1

A super mean labeling of the graph $K_{2,4}$ is shown in Figure 2.

Figure 2
The concept of mean labeling was first introduced by Somasundaram and Ponraj [2] in the year 2003. They have studied in [2-5,8-9], the meanness of many standard graphs like $P_{n}, C_{n}, K_{n}(n \leq 3)$, the ladder, the triangular snake, $K_{1,2}, K_{1,3}, K_{2, n}, K_{2}+m K_{1}, K_{n}^{c}+2 K_{2}, S_{m}+$ $K_{1}, C_{m} \cup P_{n}(m \geq 3, n \geq 2)$, quadrilateral snake, comb, bistars $B(n), B_{n+1, n}, B_{n+2, n}$, the carona of ladder, subdivision of central edge of $B_{n, n}$, subdivision of the star $K_{1, n}(n \leq 4)$, the friendship graph $C_{3}^{(2)}$, crown $C_{n} \odot K_{1}, C_{n}^{(2)}$, the dragon, arbitrary super subdivision of a path etc. In addition, they have proved that the graphs $K_{n}(n>3), K_{1, n}(n>3), B_{m, n}(m>n+2)$, $S\left(K_{1, n}\right) n>4, C_{3}^{(t)}(t>2)$, the wheel W_{n} are not mean graphs.

The concept of super mean labeling was first introduced by R. Ponraj and D. Ramya [6]. They have studied in [6-7] the super mean labeling of some standard graphs. Also they determined all super mean graph of order ≤ 5. In [10], the super meanness of the graph $C_{2 n}$ for $n \geq 3$, the H-graph, Corona of a H-graph, 2-corona of a H-graph, corona of cycle C_{n} for $n \geq 3, m C_{n}$-snake for $m \geq 1, n \geq 3$ and $n \neq 4$, the dragon $P_{n}\left(C_{m}\right)$ for $m \geq 3$ and $m \neq 4$ and $C_{m} \times P_{n}$ for $m=3,5$ are proved.

Let C_{n} be a cycle with fixed vertex v and $\left(P_{m} ; C_{n}\right)$ the graph obtained from m copies of C_{n} and the path $P_{m}: u_{1} u_{2} \ldots u_{m}$ by joining u_{i} with the vertex v of the $i^{\text {th }}$ copy of C_{n} by means of an edge, for $1 \leq i \leq m$.

Let Q_{3} be a cube with fixed vertex v and $\left(P_{m} ; Q_{3}\right)$ the graph obtained from m copies of Q_{3} and the path $P_{m}: u_{1} u_{2} \ldots u_{m}$ by joining u_{i} with the vertex v of the $i^{t h}$ copy of Q_{3} by means of an edge, for $1 \leq i \leq m$.

Let S_{m} be a star with vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$. Define $\left(P_{2 n} ; S_{m}\right)$ to be the graph obtained from $2 n$ copies of S_{m} and the path $P_{2 n}: u_{1} u_{2} \ldots u_{2 n}$ by joining u_{j} with the vertex v_{0} of the $j^{t h}$ copy of S_{m} by means of an edge, for $1 \leq j \leq 2 n,\left(P_{n} ; S_{1}\right)$ the graph obtained from n copies of S_{1} and the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ by joining u_{j} with the vertex v_{0} of the $j^{\text {th }}$ copy of S_{1} by means of an edge, for $1 \leq j \leq n,\left(P_{n} ; S_{2}\right)$ the graph obtained from n copies of S_{2} and the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ by joining u_{j} with the vertex v_{0} of the $j^{t h}$ copy of S_{2} by means of an edge, for $1 \leq j \leq n$.

Suppose $C_{n}: v_{1} v_{2} \ldots v_{n} v_{1}$ be a cycle of length n. Let $\left[P_{m} ; C_{n}\right.$] be the graph obtained from m copies of C_{n} with vertices $v_{1_{1}}, v_{1_{2}}, \ldots, v_{1_{n}}, v_{2_{1}}, \ldots, v_{2_{n}}, \ldots, v_{m_{1}}, \ldots, v_{m_{n}}$ and joining $v_{i_{j}}$ and v_{i+1} by means of an edge, for some j and $1 \leq i \leq m-1$.

Let Q_{3} be a cube and $\left[P_{m} ; Q_{3}\right.$] the graph obtained from m copies of Q_{3} with vertices $v_{1_{1}}, v_{1_{2}}, \ldots, v_{1_{8}}, v_{2_{1}}, v_{2_{2}}, \ldots, v_{2_{8}}, \ldots, v_{m_{1}}, v_{m_{2}}, \ldots, v_{m_{8}}$ and the path $P_{m}: u_{1} u_{2} \ldots u_{m}$ by adding the edges $v_{1_{1}} v_{2_{1}}, v_{2_{1}} v_{3_{1}}, \ldots, v_{m-1_{1}} v_{m_{1}}$ (i.e) $v_{i_{1}} v_{i+1_{1}}, 1 \leq i \leq m-1$.

Let $C_{n}^{(2)}$ be a friendship graph. Define $\left[P_{m} ; C_{n}^{(2)}\right]$ to be the graph obtained from m copies of $C_{n}^{(2)}$ and the path $P_{m}: u_{1} u_{2} \ldots u_{m}$ by joining u_{i} with the center vertex of the $i^{t h}$ copy of $C_{n}^{(2)}$ for $1 \leq i \leq m$.

In this paper, we prove that $\left(P_{m} ; C_{n}\right) m \geq 1, n \geq 3,\left(P_{m} ; Q_{3}\right) m \geq 1,\left(P_{2 n} ; S_{m}\right) m \geq 3, n \geq 1$, and for any $n \geq 1\left(P_{n} ; S_{1}\right),\left(P_{n} ; S_{2}\right)$ are mean graphs. Also we establish that $\left[P_{m} ; C_{n}\right] m \geq 1$, $n \geq 3,\left[P_{m} ; Q_{3}\right] m \geq 1$ and $\left[P_{m} ; C_{n}^{(2)}\right] m \geq 1, n \geq 3$ are mean graphs.

§2. Mean Graphs $\left(P_{m} ; G\right)$

Let G be a graph with fixed vertex v and let $\left(P_{m} ; G\right)$ be the graph obtained from m copies of G and the path $P_{m}: u_{1} u_{2} \ldots u_{m}$ by joining u_{i} with the vertex v of the $i^{t h}$ copy of G by means of an edge, for $1 \leq i \leq m$.

For example $\left(P_{4} ; C_{4}\right)$ is shown in Figure 3.

Figure 3

Theorem $2.1\left(P_{m} ; C_{n}\right)$ is a mean graph, $n \geq 3$.
Proof Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}$ be the vertices in the $i^{t h}$ copy of $C_{n}, 1 \leq i \leq m$ and $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of P_{m}. Then define f on $V\left(P_{m} ; C_{n}\right)$ as follows:

Take $n= \begin{cases}2 k & \text { if } n \text { is even } \\ 2 k+1 & \text { if } n \text { is odd. }\end{cases}$
Then $f\left(u_{i}\right)= \begin{cases}(n+2)(i-1) & \text { if } i \text { is odd } \\ (n+2) i-1 & \text { if } i \text { is even }\end{cases}$
Label the vertices of $v_{i_{j}}$ as follows:
Case (i) n is odd
When i is odd,

$$
\begin{aligned}
& f\left(v_{i_{j}}\right)=(n+2)(i-1)+2 j-1,1 \leq j \leq k+1 \\
& f\left(v_{i_{k+1}+j}\right)=(n+2) i-2 j+1,1 \leq j \leq k, 1 \leq i \leq m
\end{aligned}
$$

When i is even,

$$
\begin{aligned}
& f\left(v_{i_{j}}\right)=(n+2) i-2 j, 1 \leq j \leq k, \\
& f\left(v_{i_{k+j}}\right)=(n+2)(i-1)+2(j-1), 1 \leq j \leq k+1,1 \leq i \leq m
\end{aligned}
$$

Case (ii) n is even
When i is odd,

$$
\begin{aligned}
& f\left(v_{i_{j}}\right)=(n+2)(i-1)+2 j-1,1 \leq j \leq k+1 \\
& f\left(v_{i_{k+1+j}}\right)=(n+2) i-2 j, 1 \leq j \leq k-1,1 \leq i \leq m
\end{aligned}
$$

When i is even,

$$
\begin{aligned}
& f\left(v_{i_{j}}\right)=(n+2) i-2 j, 1 \leq j \leq k+1 \\
& f\left(v_{i_{k+1+j}}\right)=(n+2)(i-1)+2 j+1,1 \leq j \leq k-1,1 \leq i \leq m
\end{aligned}
$$

The label of the edge $u_{i} u_{i+1}$ is $(n+2) i, 1 \leq i \leq m-1$.
The label of the edge $u_{i} v_{i_{1}}$ is $\begin{cases}(n+2)(i-1)+1 & \text { if } i \text { is odd, } \\ (n+2) i-1 & \text { if } i \text { is even }\end{cases}$
and the label of the edges of the cycle are

$$
\begin{aligned}
& (n+2) i-1,(n+2) i-2, \ldots,(n+2) i-n \quad \text { if } i \text { is odd, } \\
& (n+2) i-2,(n+2) i-3, \ldots,(n+2) i-(n+1) \quad \text { if } i \text { is even. }
\end{aligned}
$$

For example, the mean labelings of $\left(P_{6} ; C_{5}\right)$ and $\left(P_{5} ; C_{6}\right)$ are shown in Figure 4.

Figure 4

Theorem $2.2\left(P_{m} ; Q_{3}\right)$ is a mean graph .
Proof For $1 \leq j \leq 8$, let $v_{i_{j}}$ be the vertices in the $i^{t h}$ copy of $Q_{3}, 1 \leq i \leq m$ and $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of P_{m}.

Then define f on $V\left(P_{m} ; Q_{3}\right)$ as follows:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lc}
14 i-14 & \text { if } i \text { is odd } \\
14 i-1 & \text { if } i \text { is even }
\end{array}\right.
$$

When i is odd,

$$
\begin{aligned}
& f\left(v_{i_{1}}\right)=14 i-13, \quad 1 \leq i \leq m \\
& f\left(v_{i_{j}}\right)=14 i-13+j, \quad 2 \leq j \leq 4,1 \leq i \leq m \\
& f\left(v_{i_{5}}\right)=14 i-5, \quad 1 \leq i \leq m \\
& f\left(v_{i_{j}}\right)=14 i-9+j, \quad 6 \leq j \leq 8,1 \leq i \leq m
\end{aligned}
$$

when i is even,

$$
\begin{aligned}
& f\left(v_{i_{j}}\right)=14 i-1-j, \quad 1 \leq j \leq 3,1 \leq i \leq m \\
& f\left(v_{i_{4}}\right)=14 i-6,1 \leq i \leq m \\
& f\left(v_{i_{j}}\right)=14 i-5-j, 5 \leq j \leq 7,1 \leq i \leq m \\
& f\left(v_{i_{8}}\right)=14 i-14,1 \leq i \leq m
\end{aligned}
$$

The label of the edges of P_{m} are $14 i, 1 \leq i \leq m-1$.
The label of the edges of $u_{i} v_{i_{1}}= \begin{cases}14 i-13, & \text { if } i \text { is odd } \\ 14 i-1, & \text { if } i \text { is even }\end{cases}$
The label of the edges of the cube are
$14 i-1,14 i-2, \ldots, 14 i-12 \quad$ if i is odd,
$14 i-2,14 i-3, \ldots, 14 i-13$ if i is even.
For example, the mean labeling of $\left(P_{5} ; Q_{3}\right)$ is shown in Figure 5.

$$
\begin{aligned}
f\left(u_{2 j+1}\right) & =(2 m+4) j, \quad 0 \leq j \leq n-1 \\
f\left(u_{2 j}\right) & =(2 m+4) j-1, \quad 1 \leq j \leq n \\
f\left(v_{0_{2 j+1}}\right) & =(2 m+4) j+1, \quad 0 \leq j \leq n-1, \\
f\left(v_{0_{2 j}}\right) & =(2 m+4) j-2, \quad 1 \leq j \leq n, \\
f\left(v_{i_{2 j+1}}\right) & =(2 m+4) j+2 i, \quad 0 \leq j \leq n-1,1 \leq i \leq m \\
f\left(v_{i_{2 j}}\right) & =(2 m+4)(j-1)+2 i+1, \quad 1 \leq j \leq n, 1 \leq i \leq m
\end{aligned}
$$

The label of the edge $u_{j} u_{j+1}$ is $(m+2) j, 1 \leq j \leq 2 n-1$
The label of the edge $u_{j} v_{0_{j}}$ is

$$
\begin{cases}(m+2)(j-1)+1, & \text { if } j \text { is odd } \\ (m+2) j-1, & \text { if } j \text { is even }\end{cases}
$$

The label of he edge $v_{0_{j}} v_{i_{j}}$ is

$$
\begin{cases}(m+2)(j-1)+i+1, & \text { if } j \text { is odd, } 1 \leq i \leq m \\ (m+2)(j-1)+i, & \text { if } j \text { is even, } 1 \leq i \leq m\end{cases}
$$

For example, the mean labeling of $\left(P_{6} ; S_{5}\right)$ is shown in Figure 6.

Figure 6

Theorem $2.4\left(P_{n} ; S_{1}\right)$ and $\left(P_{n} ; S_{2}\right)$ are mean graphs for any $n \geq 1$.
Proof Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of P_{n}. Let $v_{o_{1}}, v_{0_{2}}, \ldots, v_{0_{n}}$ and $v_{1_{1}}, v_{1_{2}}, \ldots, v_{1_{n}}$ be the vertices of S_{1}.

Label the vertices of $\left(P_{n} ; S_{1}\right)$ as follows:

$$
\begin{aligned}
& f\left(u_{j}\right)=\left\{\begin{array}{cc}
3 j-3 & \text { if } j \text { is odd, } 1 \leq j \leq n \\
3 j-1 & \text { if } j \text { is even, } 1 \leq j \leq n
\end{array}\right. \\
& f\left(v_{0_{j}}\right)=3 j-2,1 \leq j \leq n \\
& f\left(v_{1_{j}}\right)= \begin{cases}3 j-1 & \text { if } j \text { is odd, } 1 \leq j \leq n \\
3 j-3 & \text { if } j \text { is even, } 1 \leq j \leq n\end{cases}
\end{aligned}
$$

The label of the edges of P_{n} are $3 j, 1 \leq j \leq n-1$.
The label of the edges $u_{j} v_{0_{j}}$ is $\begin{cases}3 j-2, & \text { if } j \text { is odd } \\ 3 j-1, & \text { if } j \text { is even }\end{cases}$
The label of the edges $v_{0_{j}} v_{1_{j}}$ is $\begin{cases}3 j-1, & \text { if } j \text { is odd } \\ 3 j-2, & \text { if } j \text { is even }\end{cases}$
Let $v_{0_{1}}, v_{0_{2}}, \ldots, v_{0_{n}}, v_{1_{1}}, v_{1_{2}}, \ldots, v_{1_{n}}$ and $v_{2_{1}}, v_{2_{2}}, \ldots, v_{2_{n}}$ be the vertices of S_{2}.
Label the vertices of $\left(P_{n} ; S_{2}\right)$ as follows:

$$
\left.\begin{array}{l}
f\left(u_{j}\right)= \begin{cases}4 j-4 & \text { if } j \text { is odd, } 1 \leq j \leq n \\
4 j-1 & \text { if } j \text { is even, } 1 \leq j \leq n\end{cases} \\
f\left(v_{0_{j}}\right)=4 j-2,1 \leq j \leq n
\end{array}\right\} \begin{array}{ll}
4 j\left(v_{1_{j}}\right)= \begin{cases}4 j-3 & \text { if } j \text { is odd, } 1 \leq j \leq n, \\
4 j-4 & \text { if } j \text { is even, } 1 \leq j \leq n,\end{cases} \\
f\left(v_{2_{j}}\right)= \begin{cases}4 j-1 & \text { if } j \text { is odd, } 1 \leq j \leq n, \\
4 j-3 & \text { if } j \text { is even, } 1 \leq j \leq n\end{cases}
\end{array}
$$

The label of the edges of P_{n} are $4 j, 1 \leq j \leq n-1$
The label of the edges $u_{j} v_{0_{j}}$ is $\left\{\begin{array}{cl}4 j-3, & \text { if } j \text { is odd } \\ 4 j-1 & \text { if } j \text { is even }\end{array}\right.$
The label of the edges $v_{0_{j}} v_{1_{j}}$ is $\begin{cases}4 j-2, & \text { if } j \text { is odd } \\ 4 j-3, & \text { if } j \text { is even }\end{cases}$
The label of the edges $v_{0_{j}} v_{2_{j}}$ is $\begin{cases}4 j-1, & \text { if } j \text { is odd } \\ 4 j-2, & \text { if } j \text { is even }\end{cases}$
For example, the mean labelings of $\left(P_{7} ; S_{1}\right)$ and $\left(P_{6} ; S_{2}\right)$ are shown in Figure 7.

Figure 7
§3. Mean Graphs $\left[P_{m} ; G\right]$
Let G be a graph with fixed vertex v and let $\left[P_{m} ; G\right]$ be the graph obtained from m copies of G by joining $v_{i_{j}}$ and $v_{i+1_{j}}$ by means of an edge, for some j and $1 \leq i \leq m-1$.

For example $\left[P_{5} ; C_{3}\right]$ is shown in Figure 8.

Figure 8

Theorem $3.1\left[P_{m} ; C_{n}\right]$ is a mean graph.
Proof Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of P_{m}. Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}$ be the vertices of the $i^{\text {th }}$ copy of $C_{n}, 1 \leq i \leq m$ and joining $v_{i_{j}}\left(=u_{i}\right)$ and $v_{i+1_{j}}\left(=u_{i+1}\right)$ by means of an edge, for some j.

Case (i) $n=4 t, t=1,2,3, \ldots$
Define $f: V\left(\left[P_{m} ; C_{n}\right]\right) \rightarrow\{0,1,2, \ldots, q\}$ by

$$
\begin{aligned}
f\left(v_{i_{j}}\right) & =(n+1)(i-1)+2(j-1), 1 \leq j \leq 2 t+1 \\
f\left(v_{i_{2 t+1+j}}\right) & =(n+1) i-2 j, 1 \leq j \leq 2 t-1,1 \leq i \leq m
\end{aligned}
$$

The label of the edge $v_{i_{(t+1)}} v_{i+1_{(t+1)}}$ is $(n+1) i, 1 \leq i \leq m-1$. The label of the edges of the cycle are $(n+1) i-1,(n+1) i-2, \ldots,(n+1) i-n, 1 \leq i \leq m$.

For example, the mean labeling of $\left[P_{4} ; C_{8}\right]$ is shown in Figure 9.

Figure 9

Case (ii) $n=4 t+1, t=1,2,3, \ldots$
Define $f: V\left(\left[P_{m} ; C_{n}\right]\right) \rightarrow\{0,1,2, \ldots, q\}$ by

$$
\begin{aligned}
f\left(v_{i_{1}}\right) & =(n+1)(i-1), 1 \leq i \leq m \\
f\left(v_{i_{j}}\right) & =(n+1)(i-1)+2 j-1,2 \leq j \leq 2 t+1,1 \leq i \leq m \\
f\left(v_{i_{(2 t+1+j)}}\right) & =(n+1) i-2 j, 1 \leq j \leq 2 t, 1 \leq i \leq m
\end{aligned}
$$

The label of the edge $v_{i_{(t+1)}} v_{i+1_{(t+1)}}$ is $(n+1) i, 1 \leq i \leq m-1$. The label of the edges of the cycle are $(n+1) i-1,(n+1) i-2, \ldots,(n+1) i-n, 1 \leq i \leq m$.

For example, the mean labeling of $\left[P_{6} ; C_{5}\right]$ is shown in Figure 10.

Figure 10

Case (iii) $n=4 t+2, t=1,2,3, \ldots$
Define $f: V\left(\left[P_{m} ; C_{n}\right]\right) \rightarrow\{0,1,2, \ldots, q\}$ by

$$
\begin{aligned}
f\left(v_{i_{1}}\right) & =(n+1)(i-1), 1 \leq i \leq m \\
f\left(v_{i_{j}}\right) & =(n+1)(i-1)+2 j-1,2 \leq j \leq 2 t+1,1 \leq i \leq m \\
f\left(v_{i_{(2 t+1+j)}}\right) & =(n+1) i-2 j+1,1 \leq j \leq 2 t+1,1 \leq i \leq m
\end{aligned}
$$

The label of the edge $v_{i_{(t+1)}} v_{i+1_{(t+1)}}$ is $(n+1) i, 1 \leq i \leq m-1$. The label of the edges of the cycle are $(n+1) i-1,(n+1) i-2, \ldots,(n+1) i-n, 1 \leq i \leq m$.

For example, the mean labeling of $\left[P_{5} ; C_{6}\right]$ is shown in Figure 11.

Figure 11

Case (iv) $n=4 t-1, t=1,2,3, \ldots$
Define $f: V\left(\left[P_{m} ; C_{n}\right]\right) \rightarrow\{0,1,2, \ldots, q\}$ by

$$
\begin{aligned}
f\left(v_{i_{j}}\right) & =(n+1)(i-1)+2(j-1), 1 \leq j \leq 2 t, 1 \leq i \leq m \\
f\left(v_{i_{(2 t+j)}}\right) & =(n+1) i-2 j+1,1 \leq j \leq 2 t-1,1 \leq i \leq m
\end{aligned}
$$

The label of the edge $v_{i_{(t+1)}} v_{i+1_{(t+1)}}$ is $(n+1) i, 1 \leq i \leq m-1$. The label of the edges of the cycle are $(n+1) i-1,(n+1) i-2, \ldots,(n+1) i-n, 1 \leq i \leq m$.

For example, the mean labeling of $\left[P_{7} ; C_{3}\right]$ is shown in Figure 12.

Figure 12

Theorem $3.2\left[P_{m} ; Q_{3}\right]$ is a mean graph.
Proof For $1 \leq j \leq 8$, let $v_{i_{j}}$ be the vertices in the $i^{t h}$ copy of $Q_{3}, 1 \leq i \leq m$. Then define f on $V\left[P_{m} ; Q_{3}\right]$ as follows:

When i is odd.

$$
\begin{aligned}
& f\left(v_{i_{1}}\right)=13 i-13,1 \leq i \leq m \\
& f\left(v_{i_{j}}\right)=13 i-13+j, 2 \leq j \leq 4,1 \leq i \leq m \\
& f\left(v_{i_{5}}\right)=13 i-5,1 \leq i \leq m \\
& f\left(v_{i_{j}}\right)=13 i-9+j, 6 \leq j \leq 8,1 \leq i \leq m
\end{aligned}
$$

When i is even.

$$
\begin{aligned}
& f\left(v_{i_{j}}\right)=13 i-j, 1 \leq j \leq 3,1 \leq i \leq m \\
& f\left(v_{i_{4}}\right)=13 i-5,1 \leq i \leq m \\
& f\left(v_{i_{j}}\right)=13 i-j-4,5 \leq j \leq 7,1 \leq i \leq m \\
& f\left(v_{i_{8}}\right)=13 i-13,1 \leq i \leq m
\end{aligned}
$$

The label of the edge $v_{i_{1}} v_{(i+1)_{1}}$ is $13 i, 1 \leq i \leq m-1$. The label of the edges of the cube are $13 i-1,13 i-2, \ldots, 13 i-12,1 \leq i \leq m$.

For example the mean labeling of $\left[P_{4} ; Q_{3}\right]$ is shown in Figure 13.

Figure 13

Theorem $3.3\left[P_{m} ; C_{n}^{(2)}\right]$ is a mean graph.
Proof Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of P_{m} and the vertices $u_{i}, 1 \leq i \leq m$ is attached with the center vertex in the $i^{t h}$ copy of $C_{n}^{(2)}$. Let $u_{i}=v_{i_{1}}$ (center vertex in the $i^{t h}$ copy of $C_{n}^{(2)}$).

Let $v_{i_{j}}$ and $v_{i_{j}}^{\prime}$ for $1 \leq i \leq m, 2 \leq j \leq n$ be the remaining vertices in the $i^{t h}$ copy of $C_{n}^{(2)}$.
Then define f on $V\left[P_{m}, C_{n}^{(2)}\right]$ as follows:
Take $n= \begin{cases}2 k & \text { if } n \text { is even } \\ 2 k+1 & \text { if } n \text { is odd. }\end{cases}$
Label the vertices of $v_{i_{j}}$ and $v_{i_{j}}^{\prime}$ as follows:
Case (i) When n is odd

$$
\begin{aligned}
f\left(v_{i_{1}}\right) & =(2 n+1) i-(n+1), 1 \leq i \leq m \\
f\left(v_{i_{j}}\right) & =(2 n+1) i-(n+2)-2(j-2), 2 \leq j \leq k+2 \\
f\left(v_{i_{k+2+j}}\right) & =(2 n+1) i-2(n-1)+2(j-1), 1 \leq j \leq k-1, k \geq 2 \\
f\left(v_{i_{j}}^{\prime}\right) & =(2 n+1) i-(n-1)+2(j-2), 2 \leq j \leq k+1 \\
f\left(v_{i_{k+1+j}}^{\prime}\right) & =(2 n+1) i-1-2(j-1), 1 \leq j \leq k, 1 \leq i \leq m
\end{aligned}
$$

Case (ii) When n is even

$$
\begin{aligned}
f\left(v_{i_{j}}\right) & =(2 n+1) i-(n+1)-2(j-1), 1 \leq j \leq k+1 \\
f\left(v_{i_{k+1+j}}\right) & =(2 n+1) i-2(n-1)+2(j-1), 1 \leq j \leq k-1,1 \leq i \leq m \\
f\left(v_{i_{j}}^{\prime}\right) & =(2 n+1) i-(n-1)+2(j-2), 2 \leq j \leq k+1 \\
f\left(v_{i_{k+1+j}}^{\prime}\right) & =(2 n+1) i-2-2(j-1), 1 \leq j \leq k-1,1 \leq i \leq m
\end{aligned}
$$

The label of the edge $u_{i} u_{i+1}$ is $(2 n+1) i, 1 \leq i \leq m-1$ and the label of the edges of $C_{n}^{(2)}$ are $(2 n+1) i-1,(2 n+1) i-2, \ldots,(2 n+1) i-2 n$ for $1 \leq i \leq m$.

For example the mean labelings of $\left[P_{4}, C_{6}^{(2)}\right]$ and $\left[P_{5}, C_{3}^{(2)}\right]$ are shown in Figure 14.

Figure 14

References

[1] R. Balakrishnan and N. Renganathan, A Text Book on Graph Theory, Springer Verlag, 2000.
[2] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
[3] S. Somasundaram and R. Ponraj, Non - existence of mean labeling for a wheel, Bulletin of pure and Applied Sciences, (Section E Maths \& Statistics) 22E(2003), 103-111.
[4] S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29-35.
[5] S. Somasundaram and R. Ponraj, On Mean graphs of order ≤ 5, Journal of Decision and Mathematical Sciences, 9(1-3) (2004), 48-58.
[6] R. Ponraj and D. Ramya, Super mean labeling of graphs, Reprint.
[7 R. Ponraj and D. Ramya, On super mean graphs of order ≤ 5, Bulletin of Pure and Applied Sciences, (Section E Maths and Statistics) 25E (2006), 143-148.
[8] R. Ponraj and S. Somasundaram, Further results on mean graphs, Proceedings of Sacoeference, August 2005. 443-448.
[9] R. Ponraj and S.Somasundaram, Mean labeling of graphs obtained by identifying two graphs, Journal of Discrete Mathematical Sciences and Cryptography, 11(2)(2008), 239252.
[10] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International Journal of Mathematical Combinatorics, 3(2009), 82-96.

[^0]: ${ }^{1}$ Received March 26, 2010. Accepted June 18, 2010.

