A new additive function and the Smarandache divisor product sequences ${ }^{1}$

Weili Yao and Tieming Cao
College of Science, Shanghai University, Shanghai, P.R.China

Abstract

For any positive integer n, we define the arithmetical function $G(n)$ as $G(1)=0$. If $n>1$ and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the prime power factorization of n, then $G(n)=\frac{\alpha_{1}}{p_{1}}+$ $\frac{\alpha_{2}}{p_{2}}+\cdots+\frac{\alpha_{k}}{p_{k}}$. The main purpose of this paper is using the elementary method and the prime distribution theory to study the mean value properties of $G(n)$ in Smarandache divisor product sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$, and give two sharper asymptotic formulae for them.

Keywords Additive function, Smarandache divisor product sequences, mean value, elementary method, asymptotic formula.

§1. Introduction and results

In elementary number theory, we call an arithmetical function $f(n)$ as an additive function, if for any positive integers m, n with $(m, n)=1$, we have $f(m n)=f(m)+f(n)$. We call $f(n)$ as a complete additive function, if for any positive integers r and $s, f(r s)=f(r)+f(s)$. There are many arithmetical functions satisfying the additive properties. For example, if $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ denotes the prime power factorization of n, then function $\Omega(n)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ and logarithmic function $f(n)=\ln n$ are two complete additive functions, $\omega(n)=k$ is an additive function, but not a complete additive function. About the properties of the additive functions, there are many authors had studied it, and obtained a series interesting results, see references [1], [2], [5] and [6].

In this paper, we define a new additive function $G(n)$ as follows: $G(1)=0$; If $n>1$ and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ denotes the prime power factorization of n, then $G(n)=\frac{\alpha_{1}}{p_{1}}+\frac{\alpha_{2}}{p_{2}}+\cdots+\frac{\alpha_{k}}{p_{k}}$. It is clear that this function is a complete additive function. In fact if $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and $n=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$, then we have $m n=p_{1}^{\alpha_{1}+\beta_{1}} \cdot p_{2}^{\alpha_{2}+\beta_{2}} \cdots p_{k}^{\alpha_{k}+\beta_{k}}$. Therefore, $G(m n)=$ $\frac{\alpha_{1}+\beta_{1}}{p_{1}}+\frac{\alpha_{2}+\beta_{2}}{p_{2}}+\cdots+\frac{\alpha_{k}+\beta_{k}}{p_{k}}=G(m)+G(n)$. So $G(n)$ is a complete additive function. Now we define the Smarandache divisor product sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$ as follows: $p_{d}(n)$ denotes the product of all positive divisors of $n ; q_{d}(n)$ denotes the product of all positive divisors d of n but n. That is,

$$
p_{d}(n)=\prod_{d \mid n} d=n^{\frac{d(n)}{2}} ; \quad q_{d}(n)=\prod_{d \mid n, d<n} d=n^{\frac{d(n)}{2}-1},
$$

[^0]where $d(n)$ denotes the Dirichlet divisor function.
The sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$ are introduced by Professor F.Smarandache in references [3], [4] and [9], where he asked us to study the various properties of $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$. About this problem, some authors had studied it, and proved some conclusions, see references [7], [8], [10] and [11].

The main purpose of this paper is using the elementary method and the prime distribution theory to study the mean value properties of $G\left(p_{d}(n)\right)$ and $G\left(q_{d}(n)\right)$, and give two sharper asymptotic formulae for them. That is, we shall prove the following:

Theorem 1. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} G\left(p_{d}(n)\right)=B \cdot x \cdot \ln x+(2 \gamma \cdot B-D-B) \cdot x+O(\sqrt{x} \ln \ln x),
$$

where $B=\sum_{p} \frac{1}{p^{2}}, D=\sum_{p} \frac{\ln p}{p^{2}}, \gamma$ is the Euler constant, and \sum_{p} denotes the summation over all primes.

Theorem 2. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} G\left(q_{d}(n)\right)=B \cdot x \cdot \ln x+(2 \gamma \cdot B-2 B-D) \cdot x+O(\sqrt{x} \ln \ln x)
$$

where B and D are defined as same as in Theorem 1.

§2. Two simple lemmas

In this section, we give two simple lemmas, which are necessary in the proof of the theorems. First we have:

Lemma 1. For any real number $x>1$, we have the asymptotic formula:

$$
\sum_{p \leq x} \frac{1}{p}=\ln \ln x+A+O\left(\frac{1}{\ln x}\right)
$$

where A be a constant, $\sum_{p \leq x}$ denotes the summation over all primes $p \leq x$.
Proof. See Theorem 4.12 of reference [6].

Lemma 2. For any real number $x>1$, we have the asymptotic formulae:

$$
\begin{align*}
& \sum_{n \leq x} G(n)=B \cdot x+O(\ln \ln x) \tag{I}\\
& \sum_{n \leq x} \frac{G(n)}{n}=B \cdot \ln x+C+O\left(\frac{\ln \ln x}{x}\right), \tag{II}
\end{align*}
$$

where $B=\sum_{p} \frac{1}{p^{2}}, C=\gamma \cdot B-\sum_{p} \frac{\ln p}{p^{2}}, \gamma$ is the Euler constant, and \sum_{p} denotes the summation over all primes.

Proof. For any positive integer $n>1$, from the definition of $G(n)$ we have

$$
G(n)=\sum_{p \mid n} \frac{1}{p}
$$

So from this formula and Lemma 1 we have

$$
\begin{aligned}
\sum_{n \leq x} G(n) & =\sum_{n \leq x} \sum_{p \mid n} \frac{1}{p}=\sum_{n p \leq x} \frac{1}{p}=\sum_{p \leq x} \frac{1}{p} \sum_{n \leq \frac{x}{p}} 1=\sum_{p \leq x} \frac{1}{p}\left[\frac{x}{p}\right] \\
& =x \cdot \sum_{p \leq x} \frac{1}{p^{2}}+O\left(\sum_{p \leq x} \frac{1}{p}\right)=B \cdot x+O(\ln \ln x)
\end{aligned}
$$

where $B=\sum_{p} \frac{1}{p^{2}}$ be a constant. This proves (I) of Lemma 2.
Now we prove (II) of Lemma 2, note that the asymptotic formula

$$
\sum_{n \leq x} \frac{1}{n}=\ln x+\gamma+O\left(\frac{1}{x}\right)
$$

where γ is the Euler constant. So from Lemma 1 and the definition of $G(n)$ we also have

$$
\begin{aligned}
\sum_{n \leq x} \frac{G(n)}{n} & =\sum_{n \leq x} \frac{\sum_{p \mid n} \frac{1}{p}}{n}=\sum_{n p \leq x} \frac{1}{p^{2} n}=\sum_{p \leq x} \frac{1}{p^{2}} \sum_{n \leq \frac{x}{p}} \frac{1}{n} \\
& =\sum_{p \leq x} \frac{1}{p^{2}}\left[\ln x-\ln p+\gamma+O\left(\frac{p}{x}\right)\right] \\
& =\sum_{p \leq x} \frac{\ln x}{p^{2}}-\sum_{p \leq x} \frac{\ln p}{p^{2}}+\sum_{p \leq x} \frac{1}{p^{2}} \gamma+O\left(\frac{1}{x} \sum_{p \leq x} \frac{1}{p}\right) \\
& =B \cdot \ln x-\sum_{p} \frac{\ln p}{p^{2}}+\gamma \cdot B+O\left(\frac{\ln \ln x}{x}\right) \\
& =B \cdot \ln x+C+O\left(\frac{\ln \ln x}{x}\right)
\end{aligned}
$$

where $C=\gamma \cdot B-\sum_{p} \frac{\ln p}{p^{2}}$ is a constant. This proves (II) of Lemma 2.

§3. Proof of the theorems

Now we use the above Lemmas to complete the proof of the theorems. First we prove Theorem 1. Note that the complete additive properties of $G(n)$ and the definition of $p_{d}(n)$,
from (II) of Lemma 2 and Theorem 3.17 of [6] we have

$$
\begin{aligned}
\sum_{n \leq x} G\left(p_{d}(n)\right)= & \sum_{n \leq x} G\left(n^{\frac{d(n)}{2}}\right)=\frac{1}{2} \sum_{n \leq x} d(n) G(n)=\frac{1}{2} \sum_{m n \leq x} G(m n) \\
= & \frac{1}{2} \sum_{m n \leq x}(G(m)+G(n))=\sum_{m n \leq x} G(m) \\
= & \sum_{m \leq \sqrt{x}} \sum_{n \leq \frac{x}{m}} G(m)+\sum_{n \leq \sqrt{x}} \sum_{m \leq \frac{x}{n}} G(m)-\left(\sum_{m \leq \sqrt{x}} G(m)\right)\left(\sum_{n \leq \sqrt{x}} 1\right) \\
= & \sum_{m \leq \sqrt{x}} G(m)\left[\frac{x}{m}\right]+\sum_{n \leq \sqrt{x}}\left[\frac{B \cdot x}{n}+O(\ln \ln x)\right] \\
& \quad-[\sqrt{x}+O(1)][B \cdot \sqrt{x}+O(\ln \ln x)] \\
= & x \cdot \sum_{m \leq \sqrt{x}} \frac{G(m)}{m}+O\left(\sum_{m \leq \sqrt{x}} G(m)\right)+B \cdot x \cdot \sum_{n \leq \sqrt{x}} \frac{1}{n} \\
= & x \cdot\left[\frac{1}{2} B \cdot x+\ln x+C+O\left(\frac{\ln \ln x}{\sqrt{x}}\right)\right]+B \cdot x \cdot\left[\ln \ln \sqrt{x}+\gamma+O\left(\frac{1}{\sqrt{x}}\right)\right] \\
= & B \cdot x \cdot \ln x+(C+\gamma B-B) \cdot x+O(\sqrt{x} \ln \ln x) \\
= & B \cdot x \cdot \ln x+(2 \gamma B-B-D) \cdot x+O(\sqrt{x} \ln \ln x),
\end{aligned}
$$

where $B=\sum_{p} \frac{1}{p^{2}}$ and $D=\sum_{p} \frac{\ln p}{p^{2}}, \gamma$ is the Euler constant. This proves Theorem 1.
From Lemma 2, Theorem 1 and the definition of $q_{d}(n)$ we can also deduce that

$$
\begin{aligned}
\sum_{n \leq x} G\left(q_{d}(n)\right) & =\sum_{n \leq x} G\left(n^{\frac{d(n)}{2}-1}\right)=\frac{1}{2} \sum_{n \leq x} d(n) G(n)-\sum_{n \leq x} G(n) \\
& =B \cdot x \cdot \ln x+(2 \gamma B-B-D) \cdot x-B \cdot x+O(\sqrt{x} \ln \ln x) \\
& =B \cdot x \cdot \ln x+(2 \gamma B-2 B-D) \cdot x+O(\sqrt{x} \ln \ln x) .
\end{aligned}
$$

This completes the proof of Theorem 2.

§4. Some notes

For any positive integer n and any fixed real number β, we define the general arithmetical function $H(n)$ as $H(1)=0$. If $n>1$ and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the prime power factorization of n, then $H(n)=\alpha_{1} \cdot p_{1}^{\beta}+\alpha_{2} \cdot p_{2}^{\beta}+\cdots+\alpha_{k} \cdot p_{k}^{\beta}$. It is clear that this function is a complete additive function. If $\beta=0$, then $H(n)=\Omega(n)$. If $\beta=-1$, then $H(n)=G(n)$. Using our method we can also give some asymptotic formulae for the mean vale of $H\left(p_{d}(n)\right)$ and $H\left(q_{d}(n)\right)$.

References

[1] C.H.Zhong, A sum related to a class arithmetical functions, Utilitas Math., 44(1993), 231-242.
[2] H.N.Shapiro, Introduction to the theory of numbers, John Wiley and Sons, 1983.
[3] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[4] M.L.Perez, Florentin Smarandache definitions, solved and unsolved problems, conjectures and theorems in Number theory and Geometry, Chicago, Xiquan Publishing House, 2000.
[5] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
[6] Tom M. Apostol. Introduction to analytic number theory, Springer-Verlag, 1976.
[7] Liu Hongyan and Zhang Wenpeng, On the simple numbers and its mean value properties, Smarandache Notions Journal, 14(2004), 171-175.
[8] Zhu Weiyi, On the divisor product sequences, Smarandache Notions Journal, 14(2004), 144-146.
[9] F.Smarandache, Sequences of numbers involved in unsolved problems, Hexis, 2006.
[10] Zhang Tianping, An arithmetic function and the divisor product sequences, research on Smarandache problems in number theory, Hexis, 2004, 21-26.
[11] Liang Fangchi, Generalization of the divisor products and proper divisor products sequences, Scientia Magna, 1 (2005), No.1, 29-32.
[12] Yi Yuan and Kang Xiaoyu, Research on Smarandache problems (in Chinese), High American Press, 2006.
[13] Chen Guohui, New progress on Smarandache problems (in Chinese), High American Press, 2007.
[14] Liu Yanni, Li Ling and Liu Baoli, Smarandache unsolved problems and new progress (in Chinese), High American Press, 2008.
[15] Wang Yu, Su Juanli and Zhang Jin, On the Smarandache notions and related problems (in Chinese), High American Press, 2008.
[16] Kenichiro Kashihara, Comments and topics on Smarandache notions and problems, Erhus University Press, USA, 1996.

[^0]: ${ }^{1}$ This work is supported by the Shanghai Innovation Fund (10-0101-07-410) and Young Teacher Scientific Research Special Fund of Shanghai (37-0101-07-704).

