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Abstract For any positive integer n, the famous F.Smarandache function S(n) is defined as

the smallest positive integer m such that n|m!. That is, S(n) = min{m : m ∈ N, n|m!}.
The main purpose of this paper is to introduce some new unsolved problems involving the

Smarandache function and the related functions.
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§1. Introduction and Results

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n|m!. That is, S(n) = min{m : m ∈ N, n|m!}. About the
properties of S(n), there are many people had studied it, and obtained a series conclusions, see
references [1], [2], [3] and [4]. Here we introduce two unsolved problems about the Smarandache
function, they are:

Problem 1. If n > 1 and n 6= 8, then
∑

d|n

1
S(d)

is not a positive integer, where
∑

d|n
denotes

the summation over all positive divisors of n.
Problem 2. Find all positive integer solutions of the equation

∑

d|n
S(d) = φ(n), where

φ(n) is the Euler function.
For any positive integer n, the F.Smarandache LCM function SL(n) is defined as the

smallest positive integer k such that n|[1, 2, · · · , k], where [1, 2, · · · , k] is the smallest
common multiple of 1, 2, · · · , k. About this function, there are three unsolved problems as
follows：

Problem 3. If n > 1 and n 6= 36, then
∑

d|n

1
SL(d)

is not a positive integer.

Problem 4. Find all positive integer solutions of the equation
∑

d|n
SL(d) = φ(n).
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Problem 5. Study the mean value properties of lnSL(n), and give an asymptotic formula
for

∑

n≤x

ln (SL(n)).

For any positive integer n > 1, let n = pα1
1 pα2

2 · · · pαk

k denotes the factorization of n into
prime power, we define function S̄(n) = max{α1p1, α2p2, · · · , αkpk}, and S̄(1) = 1. There are
two unsolved problems about this function as follows：

Problem 6. If n > 1 and n 6= 24, then
∑

d|n

1
S̄(d)

is not a positive integer.

Problem 7. Find all positive integer solutions of the equation
∑

d|n
S̄(d) = φ(n).

For any positive integer n, the dual function S∗(n) of the Smarandache function is defined
as the largest positive integer m such that m!|n. That is, S∗(n) = max{m : m ∈ N, m!|n}.
About this function, there are two unsolved problems as follows：

Problem 8. Find all positive integer solutions of the equation
∑

d|n
S∗(d) = φ(n).

Problem 9. Study the calculating problem of the product
∏

d|n
S∗(d), and give an exact

calculating formula for it.
For any positive integer n, the Pseudo-F.Smarandache function Z(n) is defined as the

largest positive integer m such that (1 + 2 + 3 + · · ·+ m) |n. That is, Z(n) = max{m : m ∈
N, m(m+1)

2 |n}. For this function, there is an unsolved problem as follows：
Problem 10. Study the mean value properties of Z(n) , and give an asymptotic formula

for
∑

n≤x

Z(n).
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