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ABSTRACT. Let n be any positive integer, a(n) denotes the product of all non-zero 
digits in base 10. For natural ;c ~ 2 and arbitrary fixed exponent m E lV, let 

Am(;c) = L amen). The main purpose of this paper is to give two exact calculating 
n<= 

formulas for Al(:C) and A2(:C)' 

l. INTRODUCTION 

For any positive integer n, let b( n) denotes the product of base 10 digits of n. 
For example, b(l) = 1, b(2)=2,··., b(10) = 0, bell) = 1, ..... In problem 22 
of book [1], Professor F .Smaradache ask us to study the properties of sequence 
{ben)}. About this problem, it appears that no one had studied it yet, at least, we 
have not seen such a paper before. The problem is interesting because it can help 
us to find some new distribution properties of the base 10 digits. In this paper, 
we consider another sequence {a( n)}, which related to Smarandache sequences. 
Let a( 11,) denotes the product of all non-zero digits in base 10 of n. For example, 
a(l) = 1, a(2) = 2, a(12) = 2, "', a(28) = 16, a(1023) = 6,······. For natural 
number x 2: 2 and arbitrary fixed e)...-ponent mEN, let 

Am(x) = L amen). (1) 
n<x 

The main purpose of this paper is to study the calculating problem of Am(x), and 
use elementary methods to deduce two exact calculating formulas for Al ( x) and 
A2(X). That is, we shall prove the following: 

Theorem. For any positive integer x, let x = a1 10k1 + a210k2 + ... + as 10k , with 
kl > k2 > ... > ks 2: 0 and 1 :5 ai :5 9, i = 2,3,··· ,s. Then we have the 
calculating formulas 

A ( ) = al a
2 ···as ~ aT -ai +2 (45+ [_1_]) .46k;-I. 

1 T 2 ~ 3 k i + 1 ' 
,=1 II aj . 

i=i 
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A?(x)"= aia~ ... a; ~ 2a~ - 3a; + ai + 6 (285 [_1_]). 286ki - 1 

- 6?-' s + ki + 1 ' 
:=1 II a; 

j=i 

where [xl denotes the greatest integer not exceeding x. 

For general integer m ~ 3, using our methods we can also give an exact calcu
lating formula for Am(x). That is, we have the calculating formula 

A ( . m m m ~ 1 + Bm ( ai) ([ 1] (») ( k"-1 
m x) = a 1 a2 •. , as ~ s -k' + Bm 10 . 1 + B m(10)' , 

i=1 II m Z + 1 
a" J 

j=i 

where aj as the definition as in the above Theorem, and Bm (N) = L n m . 

1~n<N 

2. PROOF OF THE THEOREM 

In this section, we complete the proof of the Theorem. First we need following 
two simple Lemmas. 

Lemma 1. For any integer k ~ 1 and 1 S c S 9, we have the identities 
a) A1(10k) = 45· 46k- 1; 

b) A 1(c·l0k)=45. (1+ (C~l)C) . 46k- 1. 

Proof. We first prove a) of Lemma 1 by induction. For k = 1, we have A 1(101) = 
AdlO) = 1 + 2 + ... + 9 = 45. So that the identity 

Al(10k) = L a(n) = 45· 46k
-

1 (2) 
n<10l: 

holds for k = 1. Assume (2) is true for k = m ~ 1. Then by the inductive 
assumption we have 

a(n) 

=A1 (9·lO m )+ 2: a(n+9·lOm
) 

O~n<lom 

=A l (9·lOm )+9· 2: a(n) 

= A l (9 . 10m
) + 9· Al{lOm) 

= Al(8 . 10m
) + 9· A1(lOm) + 8· Al(10m) 

= ........ . 

= (1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)· A 1 (10m ) 

= 46 ... 4 1 (lOm) 

= 45. 46m
• 
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That is, (2) is true for ,,~ = m + 1. This proves the first part of Lemma 1. 
The second part b) follows from a) of Lemma 1 and the recurrence formula 

.11(c-l0 k) = 2: a(n) + 2: a(n) 
n«c-1)-10k (c-1) -10" :5n<c.10 k 

- 2: a(n) + 2: a(n+(c-l).10k) 
n«c-1)·lOk 0:5 n <10 k 

- ~ a(n) + (c -1)- ~ a(n) 
n«c-l)·10k n<10 k 

= .11«c-l) -10k) + (c -1)· .11(10k)_ 

This completes the proof of Lemma 1. 

Lemma 2. For any integer k ~ 1 and 1 :5 c :5 9, we have the identities 
c) .1z(10k) = 285 - 286k-\ 

d) .12(a - 10k) = 285 _ [1 + (a - 1)ai2a - .1)] _ 286k- 1. 

Proof. Note that .12(10) = 285. The Lemma 2 can be deduced by Lemma 1, 
induction and the recurrence formula 

= ~ a2 (n) + ~ a2(n + 9 _10 k
) 

n<g·10" 0:5n<10" 

_ ~ a2 (n) + 92
• ~ a2 (n) 

= ........ . 

= (1 + 12 +22 + ._. + 92) - .12(10k) 

= 286 -Az(10k). 

This completes the proof of Lemma 2. 

Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. 
For any positive integer x, let x = a1 • 10kl + a2 . 10k2 + ... + as . 10k• with 
k1 > k2 > _ .. > ks ~ 0 under the base 10. Then applying Lemma 1 repeatedly we 
have 

a(n) 

a(n) 
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= A1(al - lOki) + al - Al(x - al - lOki) 

= A1(al _lOki) + al - Al(aZ _lOk2) + alaZ - Al(X - al _lOki - aZ _lOk2) 
= ........ . 

i::i 

This proves the first part of the Theorem_ 
Applying Lemma 2 and the first part of the Theorem repeatedly we have 

O~n<x-al -10/0 1 

= AZ(al : lOki) + ai - Az(x - al - lOki) 

= AZ(al . lOki ) + ai . Az(az .lOk2 ) + aia~. Az(x - al . lOki - aZ ·lOk2) 
= ........ . 

This completes the proof of the second part of the Theorem. 
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