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non-solvable ordinary differential equations and non-solvable partial differential equations
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§1. Introduction

Consider two systems of linear equations following:

(LESN
4 )





x+ y = 1

x+ y = −1

x− y = −1

x− y = 1

(LESS
4 )





x = y

x+ y = 2

x = 1

y = 1

Clearly, (LESN
4 ) is non-solvable because x + y = −1 is contradictious to x + y = 1, and so

that for equations x − y = −1 and x − y = 1. Thus there are no solutions x0, y0 hold with all

equations in this system. But (LESS
4 ) is solvable clearly with a solution x = 1 and y = 1.

It should be noted that each equation in systems (LESN
4 ) and (LESS

4 ) is a straight line

in Euclidean space R
2, such as those shown in Fig.1.
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What is the geometrical essence of a non-solvable or solvable system of linear equations?

It is clear that each linear equation ax + by = c with ab 6= 0 is in fact a point set Lax+by=c =

{(x, y)|ax + by = c} in R
2. Then, the system (LESn

4 ) is non-solvable but (LESS
4 ) solvable in

sense because of

Lx+y=1

⋂
Lx+y=−1

⋂
Lx−y=1

⋂
Lx−y=−1 = ∅

and

Lx=y

⋂
Lx=1

⋂
Ly=1

⋂
Lx+y=2 = {(1, 1)}

in Euclidean plane R
2. Generally, let

(ESm)





f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn) = 0

be a system of algebraic equations in Euclidean space R
n for an integer n ≥ 1 with point set

Sfi
such that fi(x1, x2, · · · , xn) = 0 for any point (x1, x2, · · · , xn) ∈ Sfi

, 1 ≤ i ≤ m. Then, it

is clear that the system (ESm) is solvable or not dependent on
m⋂

i=1

Sfi
= ∅ or 6= ∅. This fact

implies the following interesting result.

Proposition 1.1 Any system (ESm) of algebraic equations with each equation solvable posses

a geometrical figure in R
n, no matter it is solvable or not.

Conversely, for a geometrical figure G in R
n, n ≥ 2, how can we get an algebraic represen-

tation for geometrical figure G ? As a special case, let G be a graph embedded in Euclidean
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space R
n and

(ESe)





fe
1 (x1, x2, · · · , xn) = 0

fe
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fe
n−1(x1, x2, · · · , xn) = 0

be a system of equations for determining an edge e ∈ E(G) in R
n. Then the system

fe
1 (x1, x2, · · · , xn) = 0

fe
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fe
n−1(x1, x2, · · · , xn) = 0





∀e ∈ E(G)

is a non-solvable system of equations. Generally, let G be a geometrical figure consisting of m

parts G1,G2, · · · ,Gm, where Gi is determined by a system of algebraic equations





f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

f
[i]
n−1(x1, x2, · · · , xn) = 0

Similarly, we get a non-solvable system

f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

f
[i]
n−1(x1, x2, · · · , xn) = 0





1 ≤ i ≤ m.

Thus we obtain the following result.

Proposition 1.2 Any geometrical figure G consisting of m parts, each of which is determined

by a system of algebraic equations in R
n, n ≥ 2 posses an algebraic representation by system of

equations, solvable or not in R
n.

For example, let G be a planar graph with vertices v1, v2, v3, v4 and edges v1v2, v1v3, v2v3,

v3v4, v4v1, shown in Fig.2.
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Then we get a non-solvable system of linear equations




x = 2

y = 8

x = 12

y = 2

3x+ 5y = 46.

More results on non-solvable linear systems of equations can be found in [9]. Terminologies

and notations in this paper are standard. For those not mentioned in this paper, we follow [12]

and [15] for partial or ordinary differential equations. [5-7], [13-14] for algebra, topology and

Smarandache systems, and [1] for mechanics.

§2. Smarandache Systems with Labeled Topological Graphs

A non-solvable system of algebraic equations is in fact a contradictory system in classical

meaning of mathematics. As we have shown, such systems extensively exist in mathematics

and possess real meaning even if in classical mathematics. This fact enables one to introduce

the conception of Smarandache system following.

Definition 2.1([5-7]) A rule R in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule R.

Without loss of generality, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems,

where Ri is a rule on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj

or Σi = Σj but Ri 6= Rj , then they are said to be different, otherwise, identical. If we can list

all systems of a Smarandache system (Σ;R), then we get a Smarandache multi-space defined

following.
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Definition 2.2([5-7],[11]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multi-space Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on

Σ̃, denoted by
(
Σ̃; R̃

)
.

The conception of Smarandache multi-space reflects the notion of the whole Σ̃ is consisting

of its parts (Σi;Ri), i ≥ 1 for a thing in philosophy. The laterality of human beings implies

that one can only determines lateral feature of a thing in general. Such a typical example is

the proverb of blind men with an elephant.

Fig. 3

In this proverb, there are 6 blind men were be asked to determine what an elephant looked

like by feeling different parts of the elephant’s body. The man touched the elephant’s leg, tail,

trunk, ear, belly or tusk claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a

solid pipe, respectively. They then entered into an endless argument and each of them insisted

his view right. All of you are right! A wise man explains to them: Why are you telling it

differently is because each one of you touched the different part of the elephant. So, actually the

elephant has all those features what you all said, i.e., a Smarandache multi-space consisting of

these 6 parts.

Usually, a man is blind for an unknowing thing and takes himself side as the dominant

factor. That makes him knowing only the lateral features of a thing, not the whole. That is also

the reason why one used to harmonious, not contradictory systems in classical mathematics.

But the world is filled with contradictions. Being a wise man knowing the world, we need to

find the whole, not just the parts. Thus the Smarandache multi-space is important for sciences.

Notice that a Smarandache multi-space
(
Σ̃; R̃

)
naturally inherits a combinatorial struc-

ture, i.e., a vertex-edge labeled topological graph defined following.

Definition 2.3(([5-7])) Let
(
Σ̃; R̃

)
be a Smarandache multi-space with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Then a inherited graph G
[
Σ̃, R̃

]
of
(
Σ̃; R̃

)
is a labeled topological graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}
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with an edge labeling

lE : (Σi,Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi,Σj) = ̟

(
Σi

⋂
Σj

)
,

where ̟ is a characteristic on Σi

⋂
Σj such that Σi

⋂
Σj is isomorphic to Σk

⋂
Σl if and only

if ̟(Σi

⋂
Σj) = ̟ (Σk

⋂
Σl) for integers 1 ≤ i, j, k, l ≤ m.

For example, let S1 = {a, b, c}, S2 = {c, d, e}, S3 = {a, c, e} and S4 = {d, e, f}. Then the

multi-space S̃ =
4⋃

i=1

Si = {a, b, c, d, e, f} with its labeled topological graph G[S̃] is shown in

Fig.4.

S1 S2

S3 S4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.4

The labeled topological graph G
[
Σ̃, R̃

]
reflects the notion that there exist linkages between

things in philosophy. In fact, each edge (Σi,Σj) ∈ E
(
G
[
Σ̃, R̃

])
is such a linkage with coupling

̟(Σi

⋂
Σj). For example, let a = {tusk}, b = {nose}, c1, c2 = {ear}, d = {head}, e = {neck},

f = {belly}, g1, g2, g3, g4 = {leg}, h = {tail} for an elephant C . Then its labeled topological

graph is shown in Fig.5,

a

b

d

c1

c2

e f

g1 g2

h

g3 g4

a ∩ d c1 ∩ d

b ∩ d
c2 ∩ d

d ∩ e e ∩ f

g1 ∩ f g2 ∩ f

g3 ∩ f g4 ∩ f

f ∩ h

Fig.5

which implies that one can characterizes the geometrical behavior of an elephant combinatori-

ally.
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§3. Non-Solvable Systems of Ordinary Differential Equations

3.1 Linear Ordinary Differential Equations

For integers m, n ≥ 1, let

Ẋ = F1(X), Ẋ = F2(X), · · · , Ẋ = Fm(X) (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn such that Fi(0) = 0, particu-

larly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Definition 3.1 An ordinary differential equation system (DES1
m) or (LDES1

m) are called non-

solvable if there are no function X(t) hold with (DES1
m) or (LDES1

m) unless the constants.

As we known, the general solution of the ith differential equation in (LDES1
m) is a linear

space spanned by the elements in the solution basis

Bi = { βk(t)eαkt | 1 ≤ k ≤ n }

for integers 1 ≤ i ≤ m, where

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · ·+ ks−1 + 1 ≤ i ≤ n,

λi is the ki-fold zero of the characteristic equation

det(A− λIn×n) = |A− λIn×n| = 0

with k1 + k2 + · · ·+ ks = n and βi(t) is an n-dimensional vector consisting of polynomials in t

with degree≤ ki − 1.

In this case, we can simplify the labeled topological graph G
[∑̃

, R̃
]

replaced each
∑

i by

the solution basis Bi and
∑

i

⋂∑
j by Bi

⋂
Bj if Bi

⋂
Bj 6= ∅ for integers 1 ≤ i, j ≤ m,

called the basis graph of (LDES1
m), denoted by G[LDES1

m]. For example, let m = 4 and B0
1 =

{eλ1t, eλ2t, eλ3t}, B0
2 = {eλ3t, eλ4t, eλ5t}, B0

3 = {eλ1t, eλ3t, eλ5t} and B0
4 = {eλ4t, eλ5t, eλ6t},

where λi, 1 ≤ i ≤ 6 are real numbers different two by two. Then G[LDES1
m] is shown in Fig.6.
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B0
1 B0

2

B0
3 B0

4

{eλ3t}

{eλ4t, eλ5t}

{eλ5t}

{eλ3t, eλ5t}{eλ1t, eλ3t}

Fig.6

We get the following results.

Theorem 3.2([10]) Every linear homogeneous differential equation system (LDES1
m) uniquely

determines a basis graph G[LDES1
m] inherited in (LDES1

m). Conversely, every basis graph G

uniquely determines a homogeneous differential equation system (LDES1
m) such that G[LDES1

m]

≃ G.

Such a basis graph G[LDES1
m] is called the G-solution of (LDES1

m). Theorem 3.2 implies

that

Theorem 3.3([10]) Every linear homogeneous differential equation system (LDES1
m) has a

unique G-solution, and for every basis graph H, there is a unique linear homogeneous differential

equation system (LDES1
m) with G-solution H.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.7 A basis graph

Example 3.4 Let (LDEn
m) be the following linear homogeneous differential equation system





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)
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where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} and its basis graph is shown in Fig.7.

3.2 Combinatorial Characteristics of Linear Differential Equations

Definition 3.5 Let (LDES1
m), (LDES1

m)′ be two linear homogeneous differential equation

systems with G-solutions H, H ′. They are called combinatorially equivalent if there is an

isomorphism ϕ : H → H ′, thus there is an isomorphism ϕ : H → H ′ of graph and labelings

θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for ∀x ∈ V (H)
⋃
E(H), denoted by

(LDES1
m)

ϕ≃ (LDES1
m)′.

We introduce the conception of integral graph for (LDES1
m) following.

Definition 3.6 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z
+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

Let GIθ

1 and GIτ

2 be two integral labeled graphs. They are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃
E(G1), denoted by GIθ

1 = GIτ

2 .

For example, these labeled graphs shown in Fig.8 are all integral on K4−e, but GIθ

1 = GIτ

2 ,

GIθ

1 6= GIσ

3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.8

Then we get a combinatorial characteristic for combinatorially equivalent (LDES1
m) fol-

lowing.

Theorem 3.5([10]) Let (LDES1
m), (LDES1

m)′ be two linear homogeneous differential equation

systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃ (LDES1
m)′ if and only if

H = H ′.

3.3 Non-Linear Ordinary Differential Equations

If some functions Fi(X), 1 ≤ i ≤ m are non-linear in (DES1
m), we can linearize these non-linear

equations Ẋ = Fi(X) at the point 0, i.e., if

Fi(X) = F ′
i (0)X +Ri(X),
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where F ′
i (0) is an n× n matrix, we replace the ith equation Ẋ = Fi(X) by a linear differential

equation

Ẋ = F ′
i (0)X

in (DES1
m). Whence, we get a uniquely linear differential equation system (LDES1

m) from

(DES1
m) and its basis graph G[LDES1

m]. Such a basis graph G[LDES1
m] of linearized dif-

ferential equation system (DES1
m) is defined to be the linearized basis graph of (DES1

m) and

denoted by G[DES1
m]. We can also apply G-solutions G[DES1

m] for characterizing the behavior

of (DES1
m).

§4. Cauchy Problem on Non-Solvable Partial Differential Equations

Let (PDESm) be a system of partial differential equations with





F1(x1, x2, · · · , xn, u, ux1
, · · · , uxn

, ux1x2
, · · · , ux1xn

, · · · ) = 0

F2(x1, x2, · · · , xn, u, ux1
, · · · , uxn

, ux1x2
, · · · , ux1xn

, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1
, · · · , uxn

, ux1x2
, · · · , ux1xn

, · · · ) = 0

on a function u(x1, · · · , xn, t). Then its symbol is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0,

i.e., substitute pα1

1 , pα2

2 , · · · , pαn

n into (PDESm) for the term ux
α1

1
x

α2

2
···xαn

n
, where αi ≥ 0 for

integers 1 ≤ i ≤ n.

Definition 4.1 A non-solvable (PDESm) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.

The following result characterizes the non-solvable partial differential equations of first

order by applying the method of characteristic curves.

Theorem 4.2([11]) A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0
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of partial differential equations of first order is non-solvable with initial values




xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0
(x0

1, x
0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0

−
n−1∑

i=0

p0
i

∂x0
i

∂sj0

6= 0.

Particularly, we get conclusions following by Theorem 4.2.

Corollary 4.3 Let 



F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

be an algebraically contradictory system of partial differential equations of first order. Then

there are no values x0
i , u0, p

0
i , 1 ≤ i ≤ n such that





F1(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0,

F2(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0.

Corollary 4.4 A Cauchy problem (LPDESC
m) of quasilinear partial differential equations with

initial values u|xn=x0
n

= u0 is non-solvable if and only if the system (LPDESm) of partial

differential equations is algebraically contradictory.

Denoted by Ĝ[PDESC
m] such a graphG[PDESC

m] eradicated all labels. Particularly, replac-

ing each label S[i] by S
[i]
0 = {u[i]

0 } and S[i]
⋂
S[j] by S

[i]
0

⋂
S

[j]
0 for integers 1 ≤ i, j ≤ m, we get a

new labeled topological graph, denoted by G0[PDES
C
m]. Clearly, Ĝ[PDESC

m] ≃ Ĝ0[PDES
C
m].

Theorem 4.5([11]) For any system (PDESC
m) of partial differential equations of first order,

Ĝ[PDESC
m] is simple. Conversely, for any simple graph G, there is a system (PDESC

m) of

partial differential equations of first order such that Ĝ[PDESC
m] ≃ G.

Particularly, if (PDESC
m) is linear, we can immediately find its underlying graph following.

Corollary 4.6 Let (LPDESm) be a system of linear partial differential equations of first

order with maximal contradictory classes C1,C2, · · · ,Cs on equations in (LPDES). Then

Ĝ[LPDESC
m] ≃ K(C1,C2, · · · ,Cs), i.e., an s-partite complete graph.
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Definition 4.7 Let (PDESC
m) be the Cauchy problem of a partial differential equation system of

first order. Then the labeled topological graph G[PDESC
m] is called its topological graph solution,

abbreviated to G-solution.

Combining this definition with that of Theorems 4.5, the following conclusion is holden

immediately.

Theorem 4.8([11]) A Cauchy problem on system (PDESm) of partial differential equations

of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDESm),

1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

is uniquely G-solvable, i.e., G[PDESC
m] is uniquely determined.

§5. Global Stability of Non-Solvable Differential Equations

Definition 5.1 Let H be a spanning subgraph of G[LDES1
m] of systems (LDES1

m) with initial

value Xv(0). Then G[LDES1
m] is called sum-stable or asymptotically sum-stable on H if for all

solutions Yv(t), v ∈ V (H) of the linear differential equations of (LDES1
m) with |Yv(0)−Xv(0)| <

δv exists for all t ≥ 0, ∣∣∣∣∣∣

∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)

∣∣∣∣∣∣
< ε,

or furthermore,

lim
t→0

∣∣∣∣∣∣

∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)

∣∣∣∣∣∣
= 0.

Similarly, a system (PDESC
m) is sum-stable if for any number ε > 0 there exists δv >

0, v ∈ V (Ĝ[0]) such that each G(t)-solution with
∣∣∣u′[v]

0 − u
[v]
0

∣∣∣ < δv, ∀v ∈ V (Ĝ[0]) exists for all

t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (Ĝ[t])

u′
[v] −

∑

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by G[t]
Σ∼ G[0]. Furthermore, if there exists a number βv > 0, v ∈ V (Ĝ[0]) such

that every G′[t]-solution with
∣∣∣u′[v]

0 − u
[v]
0

∣∣∣ < βv, ∀v ∈ V (Ĝ[0]) satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (Ĝ[t])

u′
[v] −

∑

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
= 0,

then the G[t]-solution is called asymptotically stable, denoted by G[t]
Σ→ G[0].

We get results on the global stability for G-solutions of (LDES1
m) and (PDESC

m).
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Theorem 5.2([10]) A zero G-solution of linear homogenous differential equation systems

(LDES1
m) is asymptotically sum-stable on a spanning subgraph H of G[LDES1

m] if and only if

Reαv < 0 for each βv(t)eαvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H).

Example 5.3 Let a G-solution of (LDES1
m) or (LDEn

m) be the basis graph shown in Fig.4.1,

where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 = {e−5t, e−6t, e−8t},
v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the zero G-solution is sum-stable on the triangle

v4v5v6, but it is not on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}

v5

v6

Fig.9

For partial differential equations, let the system (PDESC
m) be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m (APDESC

m)

A point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for 1 ≤ i ≤ m is called

an equilibrium point of the ith equation in (APDESm). Then we know that

Theorem 5.4([11]) Let X
[i]
0 be an equilibrium point of the ith equation in (APDESm) for each

integer 1 ≤ i ≤ m. If
m∑

i=1

Hi(X) > 0 and
m∑

i=1

∂Hi

∂t
≤ 0 for X 6=

m∑
i=1

X
[i]
0 , then the system

(APDESm) is sum-stability, i.e., G[t]
Σ∼ G[0]. Furthermore, if

m∑
i=1

∂Hi

∂t
< 0 for X 6=

m∑
i=1

X
[i]
0 ,

then G[t]
Σ→ G[0].

§6. Applications

6.1 Applications to Geometry

First, it is easily to shown that the G-solution of (PDESC
m) is nothing but a differentiable

manifold.

Theorem 6.1([11]) Let the Cauchy problem be (PDESC
m). Then every connected component

of Γ[PDESC
m] is a differentiable n-manifold with atlas A = {(Uv, φv)|v ∈ V (Ĝ[0])} underlying

graph Ĝ[0], where Uv is the n-dimensional graph G[u[v]] ≃ R
n and φv the projection φv :

((x1, x2, · · · , xn) , u (x1, x2, · · · , xn)))→ (x1, x2, · · · , xn) for ∀ (x1, x2, · · · , xn) ∈ R
n.
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Theorems 4.8 and 6.1 enables one to find the following result for vector fields on differen-

tiable manifolds by non-solvable system (PDESC
m).

Theorem 6.2([11]) For any integer m ≥ 1, let Ui, 1 ≤ i ≤ m be open sets in R
n underlying a

connected graph defined by

V (G) = {Ui|1 ≤ i ≤ m}, E(G) = {(Ui, Uj)|Ui

⋂
Uj 6= ∅, 1 ≤ i, j ≤ m}.¸

If Xi is a vector field on Ui for integers 1 ≤ i ≤ m, then there always exists a differentiable

manifold M ⊂ R
n with atlas A = {(Ui, φi)|1 ≤ i ≤ m} underlying graph G and a function

uG ∈ Ω0(M) such that

Xi(uG) = 0, 1 ≤ i ≤ m.

More results on geometrical structure of manifold can be found in references [2-3] and [8].

6.2 Global Control of Infectious Diseases

Consider two cases of virus for infectious diseases:

Case 1 There are m known virus V1,V2, · · · ,Vm with infected rate ki, heal rate hi for integers

1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for j 6= i.

Case 2 There are m varying V1,V2, · · · ,Vm from a virus V with infected rate ki, heal rate hi

for integers 1 ≤ i ≤ m.

We are easily to establish a non-solvable differential model for the spread of infectious

viruses by applying the SIR model of one infectious disease following:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI

İ = kmSI − hmI

Ṙ = hmI

(DES1
m)

and know the following result by Theorem 5.2 that

Conclusion 6.3([10]) For m infectious viruses V1,V2, · · · ,Vm in an area with infected rate ki,

heal rate hi for integers 1 ≤ i ≤ m, then they decline to 0 finally if 0 < S <
m∑

i=1

hi

/
m∑

i=1

ki ,

i.e., these infectious viruses are globally controlled. Particularly, they are globally controlled if

each of them is controlled in this area.

6.3 Flows in Network

Let O be a node in N incident with m in-flows and 1 out-flow shown in Fig.10.
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66- �f1 fm

F

f2 fm−1

O }3
Fig.10

How can we characterize the behavior of flow F? Denote the rate, density of flow fi by ρ[i]

for integers 1 ≤ i ≤ m and that of F by ρ[F ], respectively. Then we know that

∂ρ[i]

∂t
+ φi(ρ

[i])
∂ρ[i]

∂x
= 0, 1 ≤ i ≤ m.

We prescribe the initial value of ρ[i] by ρ[i](x, t0) at time t0. Replacing each ρ[i] by ρ in

these flow equations of fi, 1 ≤ i ≤ m enables one getting a non-solvable system (PDESC
m) of

partial differential equations following.

∂ρ

∂t
+ φi(ρ)

∂ρ

∂x
= 0

ρ |t=t0 = ρ[i](x, t0)



 1 ≤ i ≤ m.

Let ρ
[i]
0 be an equilibrium point of the ith equation, i.e., φi(ρ

[i]
0 )
∂ρ

[i]
0

∂x
= 0. Applying

Theorem 5.4, if

m∑

i=1

φi(ρ) < 0 and

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
≥ 0

for X 6=
m∑

k=1

ρ
[i]
0 , then we know that the flow F is stable and furthermore, if

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
< 0

for X 6=
m∑

k=1

ρ
[i]
0 , then it is also asymptotically stable.
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