Non-Solvable Spaces of Linear Equation Systems

Linfan Mao
(Chinese Academy of Mathematics and System Science, Beijing 100190, P.R.China)
E-mail: maolinfan@163.com

Abstract

A Smarandache system $(\Sigma ; \mathcal{R})$ is such a mathematical system that has at least one Smarandachely denied rule in \mathcal{R}, i.e., there is a rule in $(\Sigma ; \mathcal{R})$ that behaves in at least two different ways within the same set Σ, i.e., validated and invalided, or only invalided but in multiple distinct ways. For such systems, the linear equation systems without solutions, i.e., non-solvable linear equation systems are the most simple one. We characterize such nonsolvable linear equation systems with their homeomorphisms, particularly, the non-solvable linear equation systems with 2 or 3 variables by combinatorics. It is very interesting that every planar graph with each edge a straight segment is homologous to such a non-solvable linear equation with 2 variables.

Key Words: Smarandachely denied axiom, Smarandache system, non-solvable linear equations, \vee-solution, \wedge-solution.

AMS(2010): 15A06, 68R10

§1. Introduction

Finding the exact solution of equation system is a main but a difficult objective unless the case of linear equations in classical mathematics. Contrary to this fact, what is about the non-solvable case? In fact, such an equation system is nothing but a contradictory system, and characterized only by non-solvable equations for conclusion. But our world is overlap and hybrid. The number of non-solvable equations is more than that of the solvable. The main purpose of this paper is to characterize the behavior of such linear equation systems.

Let $\mathbb{R}^{m}, \mathbb{R}^{m}$ be Euclidean spaces with dimensional $m, n \geq 1$ and $T: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a $\mathbb{C}^{k}, 1 \leq k \leq \infty$ function such that $T\left(\bar{x}_{0}, \bar{y}_{0}\right)=\overline{0}$ for $\bar{x}_{0} \in \mathbb{R}^{n}, \bar{y}_{0} \in \mathbb{R}^{m}$ and the $m \times m$ matrix $\partial T^{j} / \partial y^{i}\left(\bar{x}_{0}, \bar{y}_{0}\right)$ is non-singular, i.e.,

$$
\left.\operatorname{det}\left(\frac{\partial T^{j}}{\partial y^{i}}\right)\right|_{\left(\bar{x}_{0}, \bar{y}_{0}\right)} \neq 0, \text { where } 1 \leq i, j \leq m
$$

Then the implicit function theorem ([1]) implies that there exist opened neighborhoods $V \subset \mathbb{R}^{n}$ of $\bar{x}_{0}, W \subset \mathbb{R}^{m}$ of \bar{y}_{0} and a \mathbb{C}^{k} function $\phi: V \rightarrow W$ such that

$$
T(\bar{x}, \phi(\bar{x}))=\overline{0}
$$

Thus there always exists solutions for the equation $T(\bar{x}, \overline{(y)})=\overline{0}$ if T is $\mathbb{C}^{k}, 1 \leq k \leq \infty$. Now let $T_{1}, T_{2}, \cdots, T_{m}, m \geq 1$ be different \mathbb{C}^{k} functions $\mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ for an integer $k \geq 1$. An

[^0]equation system discussed in this paper is with the form following
\[

$$
\begin{equation*}
T_{i}(\bar{x}, \bar{y})=\overline{0}, \quad 1 \leq i \leq m \tag{Eq}
\end{equation*}
$$

\]

A point $\left(\bar{x}_{0}, \bar{y}_{0}\right)$ is a \vee-solution of the equation system (Eq) if

$$
T_{i}\left(\bar{x}_{0}, \bar{y}_{0}\right)=\overline{0}
$$

for some integers $i, 1 \leq i \leq m$, and a \wedge-solution of (Eq) if

$$
T_{i}\left(\bar{x}_{0}, \bar{y}_{0}\right)=\overline{0}
$$

for all integers $1 \leq i_{0} \leq m$. Denoted by S_{i}^{0} the solutions of equation $T_{i}(\bar{x}, \bar{y})=\overline{0}$ for integers $1 \leq i \leq m$. Then $\bigcup_{i=1}^{m} S_{i}^{0}$ and $\bigcap_{i=1}^{m} S_{i}^{0}$ are respectively the \vee-solutions and \wedge-solutions of equations (Eq). By definition, we are easily knowing that the \wedge-solution is nothing but the same as the classical solution.

Definition 1.1 The \vee-solvable, \wedge-solvable and non-solvable spaces of equations (Eq) are respectively defined by

$$
\bigcup_{i=1}^{m} S_{i}^{0}, \quad \bigcap_{i=1}^{m} S_{i}^{0} \text { and } \bigcup_{i=1}^{m} S_{i}^{0}-\bigcap_{i=1}^{m} S_{i}^{0} .
$$

Now we construct a finite graph $G[E q]$ of equations (Eq) following:

$$
\begin{aligned}
& V(G[E q])=\left\{v_{i} \mid 1 \leq i \leq m\right\} \\
& E(G[E q])=\left\{\left(v_{i}, v_{j}\right) \mid \exists\left(\bar{x}_{0}, \bar{y}_{0}\right) \Rightarrow T_{i}\left(\bar{x}_{0}, \bar{y}_{0}\right)=\overline{0} \wedge T_{j}\left(\bar{x}_{0}, \bar{y}_{0}\right)=\overline{0}, 1 \leq i, j \leq m\right\}
\end{aligned}
$$

Such a graph $G[E q]$ can be also represented by a vertex-edge labeled graph $G^{L}[E q]$ following:
$V\left(G^{L}[E q]\right)=\left\{S_{i}^{0} \mid 1 \leq i \leq m\right\}$,
$E(G[E q])=\left\{\left(S_{i}^{0}, S_{j}^{0}\right)\right.$ labeled with $\left.S_{i}^{0} \bigcap S_{j}^{0} \mid S_{i}^{0} \bigcap S_{j}^{0} \neq \emptyset, 1 \leq i, j \leq m\right\}$.
For example, let $S_{1}^{0}=\{a, b, c\}, S_{2}^{0}=\{c, d, e\}, S_{3}^{0}=\{a, c, e\}$ and $S_{4}^{0}=\{d, e, f\}$. Then its edge-labeled graph $G[E q]$ is shown in Fig. 1 following.

Fig. 1

Notice that $\bigcup_{i=1}^{m} S_{i}^{0}=\bigcup_{i=1}^{m} S_{i}^{0}$, i.e., the non-solvable space is empty only if $m=1$ in (Eq). Generally, let $\left(\Sigma_{1} ; \mathcal{R}_{1}\right)\left(\Sigma_{2} ; \mathcal{R}_{2}\right), \cdots,\left(\Sigma_{m} ; \mathcal{R}_{m}\right)$ be mathematical systems, where \mathcal{R}_{i} is a rule on Σ_{i} for integers $1 \leq i \leq m$. If for two integers $i, j, 1 \leq i, j \leq m, \Sigma_{i} \neq \Sigma_{j}$ or $\Sigma_{i}=\Sigma_{j}$ but $\mathcal{R}_{i} \neq \mathcal{R}_{j}$, then they are said to be different, otherwise, identical.

Definition $1.2([12]-[13])$ A rule in \mathcal{R} a mathematical system $(\Sigma ; \mathcal{R})$ is said to be Smarandachely denied if it behaves in at least two different ways within the same set Σ, i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system $(\Sigma ; \mathcal{R})$ is a mathematical system which has at least one Smarandachely denied rule in \mathcal{R}.

Thus, such a Smarandache system is a contradictory system. Generally, we know the conception of Smarandache multi-space with its underlying combinatorial structure defined following.

Definition 1.3([8]-[10]) Let $\left(\Sigma_{1} ; \mathcal{R}_{1}\right),\left(\Sigma_{2} ; \mathcal{R}_{2}\right), \cdots,\left(\Sigma_{m} ; \mathcal{R}_{m}\right)$ be $m \geq 2$ mathematical spaces, different two by two. A Smarandache multi-space $\widetilde{\Sigma}$ is a union $\bigcup_{i=1}^{m} \Sigma_{i}$ with rules $\widetilde{\mathcal{R}}=\bigcup_{i=1}^{m} \mathcal{R}_{i}$ on $\widetilde{\Sigma}$, i.e., the rule \mathcal{R}_{i} on Σ_{i} for integers $1 \leq i \leq m$, denoted by $(\widetilde{\Sigma} ; \widetilde{\mathcal{R}})$.

Similarly, the underlying graph of a Smarandache multi-space $(\widetilde{\Sigma} ; \widetilde{\mathcal{R}})$ is an edge-labeled graph defined following.

Definition 1.4([8]-[10]) Let $(\widetilde{\Sigma} ; \widetilde{\mathcal{R}})$ be a Smarandache multi-space with $\widetilde{\Sigma}=\bigcup_{i=1}^{m} \Sigma_{i}$ and $\widetilde{\mathcal{R}}=$ $\bigcup_{i=1}^{m} \mathcal{R}_{i}$. Its underlying graph $G[\widetilde{\Sigma}, \widetilde{R}]$ is defined by

$$
\begin{aligned}
V(G[\widetilde{\Sigma}, \widetilde{R}]) & =\left\{\Sigma_{1}, \Sigma_{2}, \cdots, \Sigma_{m}\right\} \\
E(G[\widetilde{\Sigma}, \widetilde{R}]) & =\left\{\left(\Sigma_{i}, \Sigma_{j}\right) \mid \Sigma_{i} \bigcap \Sigma_{j} \neq \emptyset, 1 \leq i, j \leq m\right\}
\end{aligned}
$$

with an edge labeling

$$
l^{E}:\left(\Sigma_{i}, \Sigma_{j}\right) \in E(G[\widetilde{S}, \widetilde{R}]) \rightarrow l^{E}\left(\Sigma_{i}, \Sigma_{j}\right)=\varpi\left(\Sigma_{i} \bigcap \Sigma_{j}\right)
$$

where ϖ is a characteristic on $\Sigma_{i} \bigcap \Sigma_{j}$ such that $\Sigma_{i} \bigcap \Sigma_{j}$ is isomorphic to $\Sigma_{k} \bigcap \Sigma_{l}$ if and only if $\varpi\left(\Sigma_{i} \bigcap \Sigma_{j}\right)=\varpi\left(\Sigma_{k} \bigcap \Sigma_{l}\right)$ for integers $1 \leq i, j, k, l \leq m$.

We consider the simplest case, i.e., all equations in (Eq) are linear with integers $m \geq n$ and $m, n \geq 1$ in this paper because we are easily know the necessary and sufficient condition of a linear equation system is solvable or not in linear algebra. For terminologies and notations not mentioned here, we follow [2]-[3] for linear algebra, [8] and [10] for graphs and topology.

Let

$$
\begin{equation*}
A X=\left(b_{1}, b_{2}, \cdots, b_{m}\right)^{T} \tag{LEq}
\end{equation*}
$$

be a linear equation system with

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \text { and } X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
$$

for integers $m, n \geq 1$. Define an augmented matrix A^{+}of A by $\left(b_{1}, b_{2}, \cdots, b_{m}\right)^{T}$ following:

$$
A^{+}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\cdots & \cdots & \cdots & \cdots & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

We assume that all equations in ($L E q$) are non-trivial, i.e., there are no numbers λ such that

$$
\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}, b_{i}\right)=\lambda\left(a_{j 1}, a_{j 2}, \cdots, a_{j n}, b_{j}\right)
$$

for any integers $1 \leq i, j \leq m$. Such a linear equation system $(L E q)$ is non-solvable if there are no solutions $x_{i}, 1 \leq i \leq n$ satisfying ($L E q$).

§2. A Necessary and Sufficient Condition for Non-Solvable Linear Equations

The following result on non-solvable linear equations is well-known in linear algebra([2]-[3]).

Theorem 2.1 The linear equation system (LEq) is solvable if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{+}\right)$. Thus, the equation system (LEq) is non-solvable if and only if $\operatorname{rank}(A) \neq \operatorname{rank}\left(A^{+}\right)$.

We introduce the conception of parallel linear equations following.

Definition 2.2 For any integers $1 \leq i, j \leq m, i \neq j$, the linear equations

$$
\begin{aligned}
& a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}=b_{i}, \\
& a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots a_{j n} x_{n}=b_{j}
\end{aligned}
$$

are called parallel if there exists a constant c such that

$$
c=a_{j 1} / a_{i 1}=a_{j 2} / a_{i 2}=\cdots=a_{j n} / a_{i n} \neq b_{j} / b_{i} .
$$

Then we know the following conclusion by Theorem 2.1.

Corollary 2.3 For any integers $i, j, i \neq j$, the linear equation system

$$
\left\{\begin{array}{l}
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}=b_{i}, \\
a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots a_{j n} x_{n}=b_{j}
\end{array}\right.
$$

is non-solvable if and only if they are parallel.

Proof By Theorem 2.1, we know that the linear equations

$$
\begin{aligned}
& a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}=b_{i} \\
& a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots a_{j n} x_{n}=b_{j}
\end{aligned}
$$

is non-solvable if and only if $\operatorname{rank} A^{\prime} \neq \operatorname{rank} B^{\prime}$, where

$$
A^{\prime}=\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
a_{j 1} & a_{j 2} & \cdots & a_{j n}
\end{array}\right], \quad B^{\prime}=\left[\begin{array}{lllll}
a_{i 1} & a_{i 2} & \cdots & a_{i n} & b_{1} \\
a_{j 1} & a_{j 2} & \cdots & a_{j n} & b_{2}
\end{array}\right]
$$

It is clear that $1 \leq \operatorname{rank} A^{\prime} \leq \operatorname{rank} B^{\prime} \leq 2$ by the definition of matrixes A^{\prime} and B^{\prime}. Consequently, $\operatorname{rank} A^{\prime}=1$ and $\operatorname{rank} B^{\prime}=2$. Thus the matrix A^{\prime}, B^{\prime} are respectively elementary equivalent to matrixes

$$
\left[\begin{array}{llll}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right], \quad\left[\begin{array}{lllll}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0
\end{array}\right] .
$$

i.e., there exists a constant c such that $c=a_{j 1} / a_{i 1}=a_{j 2} / a_{i 2}=\cdots=a_{j n} / a_{i n}$ but $c \neq b_{j} / b_{i}$. Whence, the linear equations

$$
\begin{aligned}
& a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}=b_{i} \\
& a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots a_{j n} x_{n}=b_{j}
\end{aligned}
$$

is parallel by definition.
We are easily getting another necessary and sufficient condition for non-solvable linear equations $(L E q)$ by three elementary transformations on a $m \times(n+1)$ matrix A^{+}defined following:
(1) Multiplying one row of A^{+}by a non-zero scalar c;
(2) Replacing the ith row of A^{+}by row i plus a non-zero scalar c times row j;
(3) Interchange of two row of A^{+}.

Such a transformation naturally induces a transformation of linear equation system ($L E q$), denoted by $T(L E q)$. By applying Theorem 2.1, we get a generalization of Corollary 2.3 for nonsolvable linear equation system ($L E q$) following.

Theorem 2.4 A linear equation system (LEq) is non-solvable if and only if there exists a composition T of series elementary transformations on A^{+}with $T\left(A^{+}\right)$the forms following

$$
T\left(A^{+}\right)=\left[\begin{array}{ccccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} & b_{1}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} & b_{2}^{\prime} \\
\cdots & \cdots & \cdots & \cdots & \\
a_{m 1}^{\prime} & a_{m 2}^{\prime} & \cdots & a_{m n}^{\prime} & b_{m}^{\prime}
\end{array}\right]
$$

and integers i, j with $1 \leq i, j \leq m$ such that the equations

$$
\begin{aligned}
& a_{i 1}^{\prime} x_{1}+a_{i 2}^{\prime} x_{2}+\cdots a_{i n}^{\prime} x_{n}=b_{i}^{\prime} \\
& a_{j 1}^{\prime} x_{1}+a_{j 2}^{\prime} x_{2}+\cdots a_{j n}^{\prime} x_{n}=b_{j}^{\prime}
\end{aligned}
$$

are parallel.
Proof Notice that the solution of linear equation system following

$$
\begin{equation*}
T(A) X=\left(b_{1}^{\prime}, b_{2}^{\prime}, \cdots, b_{m}^{\prime}\right)^{T} \tag{*}
\end{equation*}
$$

has exactly the same solution with $(L E q)$. If there are indeed integers k and i, j with $1 \leq$ $k, i, j \leq m$ such that the equations

$$
\begin{aligned}
& a_{i 1}^{\prime} x_{1}+a_{i 2}^{\prime} x_{2}+\cdots a_{i n}^{\prime} x_{n}=b_{i}^{\prime} \\
& a_{j 1}^{\prime} x_{1}+a_{j 2}^{\prime} x_{2}+\cdots a_{j n}^{\prime} x_{n}=b_{j}^{\prime}
\end{aligned}
$$

are parallel, then the linear equation system $\left(L E q^{*}\right)$ is non-solvable. Consequently, the linear equation system $(L E q)$ is also non-solvable.

Conversely, if for any integers k and i, j with $1 \leq k, i, j \leq m$ the equations

$$
\begin{aligned}
& a_{i 1}^{\prime} x_{1}+a_{i 2}^{\prime} x_{2}+\cdots a_{i n}^{\prime} x_{n}=b_{i}^{\prime} \\
& a_{j 1}^{\prime} x_{1}+a_{j 2}^{\prime} x_{2}+\cdots a_{j n}^{\prime} x_{n}=b_{j}^{\prime}
\end{aligned}
$$

are not parallel for any composition T of elementary transformations, then we can finally get a linear equation system

$$
\left\{\begin{array}{l}
x_{l_{1}}+c_{1, s+1} x_{l_{s+1}}+\cdots+c_{1, n} x_{l_{n}}=d_{1} \tag{**}\\
x_{l_{2}}+c_{2, s+1} x_{l_{s+1}}+\cdots+c_{2, n} x_{l_{n}}=d_{2} \\
\cdots \\
x_{l_{s}}+c_{s, s+1} x_{l_{s+1}}+\cdots+c_{s, n}=d_{l_{n}}
\end{array}\right.
$$

by applying elementary transformations on ($L E q$) from the knowledge of linear algebra, which has exactly the same solution with $(L E q)$. But it is clear that $\left(L E q^{* *}\right)$ is solvable, i.e., the linear equation system $(L E q)$ is solvable. Contradicts to the assumption.

This result naturally determines the combinatorial structure underlying a linear equation system following.

Theorem 2.5 A linear equation system (LEq) is non-solvable if and only if there exists a composition T of series elementary transformations such that

$$
G[T(L E q)] \not \approx K_{m}
$$

where K_{m} is a complete graph of order m.

Proof Let $T\left(A^{+}\right)$be

$$
T\left(A^{+}\right)=\left[\begin{array}{ccccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} & b_{1}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} & b_{2}^{\prime} \\
\cdots & \cdots & \cdots & \cdots & \\
a_{m 1}^{\prime} & a_{m 2}^{\prime} & \cdots & a_{m n}^{\prime} & b_{m}^{\prime}
\end{array}\right]
$$

If there are integers $1 \leq i, j \leq m$ such that the linear equations

$$
\begin{aligned}
& a_{i 1}^{\prime} x_{1}+a_{i 2}^{\prime} x_{2}+\cdots a_{i n}^{\prime} x_{n}=b_{i}^{\prime} \\
& a_{j 1}^{\prime} x_{1}+a_{j 2}^{\prime} x_{2}+\cdots a_{j n}^{\prime} x_{n}=b_{j}^{\prime}
\end{aligned}
$$

are parallel, then there must be $S_{i}^{0} \bigcap S_{j}^{0}=\emptyset$, where S_{i}^{0}, S_{j}^{0} are respectively the solutions of linear equations $a_{i 1}^{\prime} x_{1}+a_{i 2}^{\prime} x_{2}+\cdots a_{i n}^{\prime} x_{n}=b_{i}^{\prime}$ and $a_{j 1}^{\prime} x_{1}+a_{j 2}^{\prime} x_{2}+\cdots a_{j n}^{\prime} x_{n}=b_{j}^{\prime}$. Whence, there are no edges $\left(S_{i}^{0}, S_{j}^{0}\right)$ in $G[L E q]$ by definition. Thus $G[L E q] \not 千 K_{m}$.

We wish to find conditions for non-solvable linear equation systems ($L E q$) without elementary transformations. In fact, we are easily determining $G[L E q]$ of a linear equation system $(L E q)$ by Corollary 2.3. Let L_{i} be the i th linear equation. By Corollary 2.3 , we divide these equations $L_{i}, 1 \leq i \leq m$ into parallel families

$$
\mathscr{C}_{1}, \mathscr{C}_{2}, \cdots, \mathscr{C}_{s}
$$

by the property that all equations in a family \mathscr{C}_{i} are parallel and there are no other equations parallel to lines in \mathscr{C}_{i} for integers $1 \leq i \leq s$. Denoted by $\left|\mathscr{C}_{i}\right|=n_{i}, 1 \leq i \leq s$. Then the following conclusion is clear by definition.

Theorem 2.6 Let (LEq) be a linear equation system for integers $m, n \geq 1$. Then

$$
G[L E q] \simeq K_{n_{1}, n_{2}, \cdots, n_{s}}
$$

with $n_{1}+n+2+\cdots+n_{s}=m$, where \mathscr{C}_{i} is the parallel family with $n_{i}=\left|\mathscr{C}_{i}\right|$ for integers $1 \leq i \leq s$ in $(L E q)$ and $(L E q)$ is non-solvable if $s \geq 2$.

Proof Notice that equations in a family \mathscr{C}_{i} is parallel for an integer $1 \leq i \leq m$ and each of them is not parallel with all equations in $\underset{1 \leq l \leq m, l \neq i}{\bigcup} \mathscr{C}_{l}$. Let $n_{i}=\left|\mathscr{C}_{i}\right|$ for integers $1 \leq i \leq s$ in ($L E q$). By definition, we know

$$
G[L E q] \simeq K_{n_{1}, n_{2}, \cdots, n_{s}}
$$

with $n_{1}+n+2+\cdots+n_{s}=m$.
Notice that the linear equation system $(L E q)$ is solvable only if $G[L E q] \simeq K_{m}$ by definition. Thus the linear equation system $(L E q)$ is non-solvable if $s \geq 2$.

Notice that the conditions in Theorem 2.6 is not sufficient, i.e., if $G[L E q] \simeq K_{n_{1}, n_{2}, \cdots, n_{s}}$, we can not claim that $(L E q)$ is non-solvable or not. For example, let $\left(L E q^{*}\right)$ and ($L E q^{* *}$) be
two linear equations systems with

$$
A_{1}^{+}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right] \quad A_{2}^{+}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 2 \\
-1 & 2 & 2
\end{array}\right]
$$

Then $G\left[L E q^{*}\right] \simeq G\left[L E q^{* *}\right] \simeq K_{4}$. Clearly, the linear equation system $\left(L E q^{*}\right)$ is solvable with $x_{1}=0, x_{2}=0$ but $\left(L E q^{* *}\right)$ is non-solvable. We will find necessary and sufficient conditions for linear equation systems with two or three variables just by their combinatorial structures in the following sections.

§3. Linear Equation System with 2 Variables

Let

$$
\begin{equation*}
A X=\left(b_{1}, b_{2}, \cdots, b_{m}\right)^{T} \tag{LEq2}
\end{equation*}
$$

be a linear equation system in 2 variables with

$$
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
\cdots & \cdots \\
a_{m 1} & a_{m 2}
\end{array}\right] \text { and } X=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
$$

for an integer $m \geq 2$. Then Theorem 2.4 is refined in the following.

Theorem 3.1 A linear equation system (LEq2) is non-solvable if and only if one of the following conditions hold:
(1) there are integers $1 \leq i, j \leq m$ such that $a_{i 1} / a_{j 1}=a_{i 2} / a_{j 2} \neq b_{i} / b_{j}$;
(2) there are integers $1 \leq i, j, k \leq m$ such that

$$
\frac{\left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{j 1} & a_{j 2}
\end{array}\right|}{\left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{k 1} & a_{k 2}
\end{array}\right|} \neq \frac{\left|\begin{array}{cc}
a_{i 1} & b_{i} \\
a_{j 1} & b_{j}
\end{array}\right|}{\left|\begin{array}{cc}
a_{i 1} & b_{i} \\
a_{k 1} & b_{k}
\end{array}\right|} .
$$

Proof The condition (1) is nothing but the conclusion in Corollary 2.3, i.e., the i th equation is parallel to the j th equation. Now if there no such parallel equations in ($L E q 2$), let T be the elementary transformation replacing all other j th equations by the j th equation plus ($-a_{j 1} / a_{i 1}$)
times the i th equation for integers $1 \leq j \leq m$. We get a transformation $T\left(A^{+}\right)$of A^{+}following

$$
T\left(A^{+}\right)=\left[\begin{array}{ccc}
0 & \left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{11} & a_{12}
\end{array}\right| & \left|\begin{array}{cc}
a_{i 1} & b_{i} \\
a_{11} & b_{1}
\end{array}\right| \\
\ldots & \ldots \\
0 & \left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{s 1} & a_{s 2}
\end{array}\right| & \left|\begin{array}{cc}
a_{i 1} & b_{i} \\
a_{s 1} & b_{s}
\end{array}\right| \\
a_{i 1} & \begin{array}{c}
a_{i 2} \\
0 \\
\ldots
\end{array}\left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{t 1} & a_{t 2}
\end{array}\right| & \left|\begin{array}{cc}
a_{i 1} & b_{i} \\
a_{t 1} & b_{t}
\end{array}\right| \\
0 & \left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{m 1} & a_{m 2}
\end{array}\right| & \left|\begin{array}{cc}
a_{i 1} & b_{i} \\
a_{m 1} & b_{m}
\end{array}\right|
\end{array}\right]
$$

where $s=i-1, t=i+1$. Applying Corollary 2.3 again, we know that there are integers $1 \leq i, j, k \leq m$ such that

$$
\frac{\left|\begin{array}{ll}
a_{i 1} & a_{i 2} \\
a_{j 1} & a_{j 2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{i 1} & a_{i 2} \\
a_{k 1} & a_{k 2}
\end{array}\right|} \neq \frac{\left|\begin{array}{ll}
a_{i 1} & b_{i} \\
a_{j 1} & b_{j}
\end{array}\right|}{\left|\begin{array}{ll}
a_{i 1} & b_{i} \\
a_{k 1} & b_{k}
\end{array}\right|}
$$

if the linear equation system (LEQ2) is non-solvable.
Notice that a linear equation $a x_{1}+b x_{2}=c$ with $a \neq 0$ or $b \neq 0$ is a straight line on \mathbb{R}^{2}. We get the following result.

Theorem 3.2 A liner equation system (LEq2) is non-solvable if and only if one of conditions following hold:
(1) there are integers $1 \leq i, j \leq m$ such that $a_{i 1} / a_{j 1}=a_{i 2} / a_{j 2} \neq b_{i} / b_{j}$;
(2) let $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right| \neq 0$ and

$$
x_{1}^{0}=\frac{\left|\begin{array}{ll}
b_{1} & a_{21} \\
b_{2} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}, \quad x_{2}^{0}=\frac{\left|\begin{array}{cc}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}
$$

Then there is an integer $i, 1 \leq i \leq m$ such that

$$
a_{i 1}\left(x_{1}-x_{1}^{0}\right)+a_{i 2}\left(x_{2}-x_{2}^{0}\right) \neq 0
$$

Proof If the linear equation system $(L E q 2)$ has a solution $\left(x_{1}^{0}, x_{2}^{0}\right)$, then

$$
x_{1}^{0}=\frac{\left|\begin{array}{ll}
b_{1} & a_{21} \\
b_{2} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}, \quad x_{2}^{0}=\frac{\left|\begin{array}{cc}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}
$$

and $a_{i 1} x_{1}^{0}+a_{i 2} x_{2}^{0}=b_{i}$, i.e., $a_{i 1}\left(x_{1}-x_{1}^{0}\right)+a_{i 2}\left(x_{2}-x_{2}^{0}\right)=0$ for any integers $1 \leq i \leq m$. Thus, if the linear equation system $(L E q 2)$ is non-solvable, there must be integers $1 \leq i, j \leq m$ such that $a_{i 1} / a_{j 1}=a_{i 2} / a_{j 2} \neq b_{i} / b_{j}$, or there is an integer $1 \leq i \leq m$ such that

$$
a_{i 1}\left(x_{1}-x_{1}^{0}\right)+a_{i 2}\left(x_{2}-x_{2}^{0}\right) \neq 0
$$

This completes the proof.
For a non-solvable linear equation system (LEq2), there is a naturally induced intersectionfree graph $I[L E q 2]$ by $(L E q 2)$ on the plane \mathbb{R}^{2} defined following:
$V(I[L E q 2])=\left\{\left(x_{1}^{i j}, x_{2}^{i j}\right) \mid a_{i 1} x_{1}^{i j}+a_{i 2} x_{2}^{i j}=b_{i}, a_{j 1} x_{1}^{i j}+a_{j 2} x_{2}^{i j}=b_{j}, 1 \leq i, j \leq m\right\}$.
$E(I[L E q 2])=\left\{\left(v_{i j}, v_{i l}\right) \mid\right.$ the segament between points $\left(x_{1}^{i j}, x_{2}^{i j}\right)$ and $\left(x_{1}^{i l}, x_{2}^{i l}\right)$ in $\left.\mathbb{R}^{2}\right\}$. (where $v_{i j}=\left(x_{1}^{i j}, x_{2}^{i j}\right)$ for $\left.1 \leq i, j \leq m\right)$.

Such an intersection-free graph is clearly a planar graph with each edge a straight segment since all intersection of edges appear at vertices. For example, let the linear equation system be ($L E q 2$) with

$$
A^{+}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 3 \\
1 & 2 & 3 \\
1 & 2 & 4
\end{array}\right]
$$

Then its intersection-free graph $I[L E q 2]$ is shown in Fig.2.

Fig. 2

Let H be a planar graph with each edge a straight segment on \mathbb{R}^{2}. Its c-line graph $L_{C}(H)$ is defined by
$V\left(L_{C}(H)\right)=\left\{\right.$ straight lines $L=e_{1} e_{2} \cdots e_{l}, s \geq 1$ in $\left.H\right\} ;$
$E\left(L_{C}(H)\right)=\left\{\left(L_{1}, L_{2}\right) \mid\right.$ if e_{i}^{1} and e_{j}^{2} are adjacent in H for $L_{1}=e_{1}^{1} e_{2}^{1} \cdots e_{l}^{1}, L_{2}=$ $\left.e_{1}^{2} e_{2}^{2} \cdots e_{s}^{2}, l, s \geq 1\right\}$.

The following result characterizes the combinatorial structure of non-solvable linear equation systems with two variables by intersection-free graphs $I[L E q 2]$.

Theorem 3.3 A linear equation system (LEq2) is non-solvable if and only if

$$
\left.G[L E q 2] \simeq L_{C}(H)\right)
$$

where H is a planar graph of order $|H| \geq 2$ on \mathbb{R}^{2} with each edge a straight segment
Proof Notice that there is naturally a one to one mapping $\phi: V(G[L E q 2]) \rightarrow V\left(L_{C}(I[L E q 2])\right)$ determined by $\phi\left(S_{i}^{0}\right)=S_{i}^{1}$ for integers $1 \leq i \leq m$, where S_{i}^{0} and S_{i}^{1} denote respectively the solutions of equation $a_{i 1} x_{1}+a_{i 2} x_{2}=b_{i}$ on the plane \mathbb{R}^{2} or the union of points between $\left(x_{1}^{i j}, x_{2}^{i j}\right)$ and $\left(x_{1}^{i l}, x_{2}^{i l}\right)$ with

$$
\left\{\begin{array}{l}
a_{i 1} x_{1}^{i j}+a_{i 2} x_{2}^{i j}=b_{i} \\
a_{j 1} x_{1}^{i j}+a_{j 2} x_{2}^{i j}=b_{j}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
a_{i 1} x_{1}^{i l}+a_{i 2} x_{2}^{i l}=b_{i} \\
a_{l 1} x_{1}^{i l}+a_{l 2} x_{2}^{i l}=b_{l}
\end{array}\right.
$$

for integers $1 \leq i, j, l \leq m$. Now if $\left(S_{i}^{0}, S_{j}^{0}\right) \in E(G[L E q 2])$, then $S_{i}^{0} \cap S_{j}^{0} \neq \emptyset$. Whence,

$$
S_{i}^{1} \bigcap S_{j}^{1}=\phi\left(S_{i}^{0}\right) \bigcap \phi\left(S_{j}^{0}\right)=\phi\left(S_{i}^{0} \bigcap S_{j}^{0}\right) \neq \emptyset
$$

by definition. Thus $\left(S_{i}^{1}, S_{j}^{1}\right) \in L_{C}(I(L E q 2))$. By definition, ϕ is an isomorphism between $G[L E q 2]$ and $L_{C}(I[L E q 2])$, a line graph of planar graph $I[L E q 2]$ with each edge a straight segment.

Conversely, let H be a planar graph with each edge a straight segment on the plane \mathbb{R}^{2}. Not loss of generality, we assume that edges $e_{1,2}, \cdots, e_{l} \in E(H)$ is on a straight line L with equation $a_{L 1} x_{1}+a_{L 2} x_{2}=b_{L}$. Denote all straight lines in H by \mathscr{C}. Then H is the intersection-free graph of linear equation system

$$
\begin{equation*}
a_{L 1} x_{1}+a_{L 2} x_{2}=b_{L}, \quad L \in \mathscr{C} . \tag{*}
\end{equation*}
$$

Thus,

$$
G\left[L E q 2^{*}\right] \simeq H
$$

This completes the proof.
Similarly, we can also consider the liner equation system (LEq2) with condition on x_{1} or x_{2} such as

$$
\begin{equation*}
A X=\left(b_{1}, b_{2}, \cdots, b_{m}\right)^{T} \tag{-}
\end{equation*}
$$

with

$$
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
\ldots & \ldots \\
a_{m 1} & a_{m 2}
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
$$

and $x_{1} \geq x^{0}$ for a real number x^{0} and an integer $m \geq 2$. In geometry, each of there equation is a ray on the plane \mathbb{R}^{2}, seeing also references [5]-[6]. Then the following conclusion can be obtained like with Theorems 3.2 and 3.3.

Theorem 3.4 A linear equation system $\left(L^{-} E q 2\right)$ is non-solvable if and only if

$$
\left.G[L E q 2] \simeq L_{C}(H)\right)
$$

where H is a planar graph of order $|H| \geq 2$ on \mathbb{R}^{2} with each edge a straight segment.

§4. Linear Equation Systems with 3 Variables

Let

$$
\begin{equation*}
A X=\left(b_{1}, b_{2}, \cdots, b_{m}\right)^{T} \tag{LEq3}
\end{equation*}
$$

be a linear equation system in 3 variables with

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
\cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & a_{m 3}
\end{array}\right] \text { and } X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

for an integer $m \geq 3$. Then Theorem 2.4 is refined in the following.

Theorem 4.1 A linear equation system (LEq3) is non-solvable if and only if one of the following conditions hold:
(1) there are integers $1 \leq i, j \leq m$ such that $a_{i 1} / a_{j 1}=a_{i 2} / a_{j 2}=a_{i 3} / a_{j 3} \neq b_{i} / b_{j}$;
(2) if $\left(a_{i 1}, a_{i 2}, a_{i 3}\right)$ and $\left(a_{j 1}, a_{j 2}, a_{j 3}\right)$ are independent, then there are numbers λ, μ and an integer $l, 1 \leq l \leq m$ such that

$$
\left(a_{l 1}, a_{l 2}, a_{l 3}\right)=\lambda\left(a_{i 1}, a_{i 2}, a_{i 3}\right)+\mu\left(a_{j 1}, a_{j 2}, a_{j 3}\right)
$$

but $b_{l} \neq \lambda b_{i}+\mu b_{j}$;
(3) if $\left(a_{i 1}, a_{i 2}, a_{i 3}\right),\left(a_{j 1}, a_{j 2}, a_{j 3}\right)$ and $\left(a_{k 1}, a_{k 2}, a_{k 3}\right)$ are independent, then there are numbers λ, μ, ν and an integer $l, 1 \leq l \leq m$ such that

$$
\left(a_{l 1}, a_{l 2}, a_{l 3}\right)=\lambda\left(a_{i 1}, a_{i 2}, a_{i 3}\right)+\mu\left(a_{j 1}, a_{j 2}, a_{j 3}\right)+\nu\left(a_{k 1}, a_{k 2}, a_{k 3}\right)
$$

but $b_{l} \neq \lambda b_{i}+\mu b_{j}+\nu b_{k}$.

Proof By Theorem 2.1, the linear equation system ($L E q 3$) is non-solvable if and only if $1 \leq \operatorname{rank} A \neq \operatorname{rank} A^{+} \leq 4$. Thus the non-solvable possibilities of $(L E q 3)$ are respectively $\operatorname{rank} A=1,2 \leq \operatorname{rank} A^{+} \leq 4, \operatorname{rank} A=2,3 \leq \operatorname{rank} A^{+} \leq 4$ and $\operatorname{rank} A=3, \operatorname{rank} A^{+}=4 . \mathrm{We}$ discuss each of these cases following.

Case $1 \operatorname{rank} A=1$ but $2 \leq \operatorname{rank} A^{+} \leq 4$
In this case, all row vectors in A are dependent. Thus there exists a number λ such that $\lambda=a_{i 1} / a_{j 1}=a_{i 2} / a_{j 2}=a_{i 3} / a_{j 3}$ but $\lambda \neq b_{i} / b_{j}$.

Case $2 \operatorname{rank} A=2,3 \leq \operatorname{rank} A^{+} \leq 4$
In this case, there are two independent row vectors. Without loss of generality, let $\left(a_{i 1}, a_{i 2}, a_{i 3}\right)$ and $\left(a_{j 1}, a_{j 2}, a_{j 3}\right)$ be such row vectors. Then there must be an integer $l, 1 \leq l \leq m$ such that the l th row can not be the linear combination of the i th row and j th row. Whence, there are numbers λ, μ such that

$$
\left(a_{l 1}, a_{l 2}, a_{l 3}\right)=\lambda\left(a_{i 1}, a_{i 2}, a_{i 3}\right)+\mu\left(a_{j 1}, a_{j 2}, a_{j 3}\right)
$$

but $b_{l} \neq \lambda b_{i}+\mu b_{j}$.
Case $3 \operatorname{rank} A=3, \operatorname{rank} A^{+}=4$
In this case, there are three independent row vectors. Without loss of generality, let $\left(a_{i 1}, a_{i 2}, a_{i 3}\right),\left(a_{j 1}, a_{j 2}, a_{j 3}\right)$ and $\left(a_{k 1}, a_{k 2}, a_{k 3}\right)$ be such row vectors. Then there must be an integer $l, 1 \leq l \leq m$ such that the l th row can not be the linear combination of the i th row, j th row and k th row. Thus there are numbers λ, μ, ν such that

$$
\left(a_{l 1}, a_{l 2}, a_{l 3}\right)=\lambda\left(a_{i 1}, a_{i 2}, a_{i 3}\right)+\mu\left(a_{j 1}, a_{j 2}, a_{j 3}\right)+\nu\left(a_{k 1}, a_{k 2}, a_{k 3}\right)
$$

but $b_{l} \neq \lambda b_{i}+\mu b_{j}+\nu b_{k}$. Combining the discussion of Case 1-Case 3, the proof is complete.
Notice that the linear equation system ($L E q 3$) can be transformed to the following ($L E q 3^{*}$) by elementary transformation, i.e., each j th row plus $-a_{j 3} / a_{i 3}$ times the i th row in $(L E q 3)$ for an integer $i, 1 \leq i \leq m$ with $a_{i 3} \neq 0$,

$$
\begin{equation*}
A^{\prime} X=\left(b_{1}^{\prime}, b_{2}^{\prime}, \cdots, b_{m}^{\prime}\right)^{T} \tag{*}
\end{equation*}
$$

with

$$
A^{\prime+}=\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & 0 & b_{1}^{\prime} \\
\cdots & \cdots & \cdots & \cdots \\
a_{(i-1) 1}^{\prime} & a_{(i-1) 2}^{\prime} & 0 & b_{i-1}^{\prime} \\
a_{i 1} & a_{i 2} & a_{i 3} & b_{i} \\
a_{(i+1) 1}^{\prime} & a_{(i+1) 2}^{\prime} & 0 & b_{i+1}^{\prime} \\
a_{m 1}^{\prime} & a_{m 2}^{\prime} & 0 & b_{m}^{\prime}
\end{array}\right]
$$

where $a_{j 1}^{\prime}=a_{j 1}-a_{j 3} a_{i 1} / a_{13}, a_{j 2}^{\prime}=a_{j 2}-a_{j 2} a_{i 2} / a_{i 3}$ and $b_{j}^{\prime}=b_{j}-a_{j 3} b_{i} / a_{i 3}$ fro integers $1 \leq j \leq m$. Applying Theorem 3.3, we get the a combinatorial characterizing on non-solvable linear systems (LEq3) following.

Theorem 4.2 A linear equation system (LEq3) is non-solvable if and only if $G[L E q 3] \not \approx K_{m}$ or $G\left[L E q 3^{*}\right] \simeq u+L_{C}(H)$, where H denotes a planar graph with order $|H| \geq 2$, size $m-1$ and each edge a straight segment, $u+G$ the join of vertex u with G.

Proof By Theorem 2.4, the linear equation system (LEq3) is non-solvable if and only if $G[L E q 3] \nsucceq K_{m}$ or the linear equation system $\left(L E q 3^{*}\right)$ is non-solvable, which implies that the linear equation subsystem following

$$
\begin{equation*}
B X^{\prime}=\left(b_{1}^{\prime}, \cdots, b_{i-1}^{\prime}, b_{i+1}^{\prime} \cdots, b_{m}^{\prime}\right)^{T} \tag{*}
\end{equation*}
$$

with

$$
B=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
\cdots & \cdots \\
a_{(i-1) 1}^{\prime} & a_{(i-1) 2}^{\prime} \\
a_{(i+1) 1}^{\prime} & a_{(i+1) 2}^{\prime} \\
a_{m 1}^{\prime} & a_{m 2}^{\prime}
\end{array}\right] \quad \text { and } \quad X^{\prime}=\left(x_{1}, x_{2}\right)^{T}
$$

is non-solvable. Applying Theorem 3.3, we know that the linear equation subsystem ($L E q 2^{*}$) is non-solvable if and only if $G\left[L E q 2^{*}\right] \simeq L_{C}(H)$), where H is a planar graph H of size $m-1$ with each edge a straight segment. Thus the linear equation system $\left(L E q 3^{*}\right)$ is non-solvable if and only if $G\left[L E q 3^{*}\right] \simeq u+L_{C}(H)$.

§5. Linear Homeomorphisms Equations

A homeomorphism on \mathbb{R}^{n} is a continuous $1-1$ mapping $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that its inverse h^{-1} is also continuous for an integer $n \geq 1$. There are indeed many such homeomorphisms on \mathbb{R}^{n}. For example, the linear transformations T on \mathbb{R}^{n}. A linear homeomorphisms equation system is such an equation system

$$
\begin{equation*}
A X=\left(b_{1}, b_{2}, \cdots, b_{m}\right)^{T} \tag{h}
\end{equation*}
$$

with $X=\left(h\left(x_{1}\right), h\left(x_{2}\right), \cdots, h\left(x_{n}\right)\right)^{T}$, where h is a homeomorphism and

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

for integers $m, n \geq 1$. Notice that the linear homeomorphism equation system

$$
\left\{\begin{array}{l}
a_{i 1} h\left(x_{1}\right)+a_{i 2} h\left(x_{2}\right)+\cdots a_{i n} h\left(x_{n}\right)=b_{i}, \\
a_{j 1} h\left(x_{1}\right)+a_{j 2}\left(x_{2}\right)+\cdots a_{j n} h\left(x_{n}\right)=b_{j}
\end{array}\right.
$$

is solvable if and only if the linear equation system

$$
\left\{\begin{array}{l}
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}=b_{i}, \\
a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots a_{j n} x_{n}=b_{j}
\end{array}\right.
$$

is solvable. Similarly, two linear homeomorphism equations are said parallel if they are nonsolvable. Applying Theorems 2.6, 3.3, 4.2, we know the following result for linear homeomorphism equation systems ($L^{h} E q$).

Theorem 5.1 Let $\left(L^{h} E q\right)$ be a linear homeomorphism equation system for integers $m, n \geq 1$. Then
(1) $G[L E q] \simeq K_{n_{1}, n_{2}, \cdots, n_{s}}$ with $n_{1}+n+2+\cdots+n_{s}=m$, where \mathscr{C}_{i}^{h} is the parallel family with $n_{i}=\left|\mathscr{C}_{i}^{h}\right|$ for integers $1 \leq i \leq s$ in $\left(L^{h} E q\right)$ and $\left(L^{h} E q\right)$ is non-solvable if $s \geq 2$;
(2) If $n=2,\left(L^{h} E q\right)$ is non-solvable if and only if $\left.G\left[L^{h} E q\right] \simeq L_{C}(H)\right)$, where H is a planar graph of order $|H| \geq 2$ on \mathbb{R}^{2} with each edge a homeomorphism of straight segment, and if $n=3$, $\left(L^{h} E q\right)$ is non-solvable if and only if $G\left[L^{h} E q\right] \not 千 K_{m}$ or $G\left[L E q 3^{*}\right] \simeq u+L_{C}(H)$, where H denotes a planar graph with order $|H| \geq 2$, size $m-1$ and each edge a homeomorphism of straight segment.

References

[1] R.Abraham, J.E.Marsden and T.Ratiu, Manifolds, Tensors Analysis and Applications, Addison-Wesley Publishing Company, Inc., 1983.
[2] G.Birkhoff and S.MacLane, A Survey of Modern Algebra (4th edition), Macmillan Publishing Co., Inc, 1977.
[3] K.Hoffman and R.Kunze, Linear Algebra (2th edition), Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.
[4] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, JP Journal of Geometry and Topology, 5(1), 2005,77-81.
[5] Linfan Mao, Parallel bundles in planar map geometries, Scientia Magna, Vol.1(2005), No.2, 120-133.
[6] Linfan Mao, On multi-metric spaces, Scientia Magna, Vol.2,No.1(2006), 87-94.
[7] Linfan Mao, Euclidean pseudo-geometry on \mathbf{R}^{n}, International J.Math. Combin., Vol. 1 (2009), 90-95.
[8] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.
[9] Linfan Mao, Smarandache Multi-Space Theory (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.
[10] Linfan Mao, Combinatorial Geometry with Applications to Field Theory (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.
[11] W.S.Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, etc., 1977.
[12] F.Smarandache, Mixed noneuclidean geometries, Eprint arXiv: math/0010119, 10/2000.
[13] F.Smarandache, A Unifying Field in Logics-Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.

[^0]: ${ }^{1}$ Received March 6, 2012. Accepted June 5, 2012.

