A Note on 1-Edge Balance Index Set

Chandrashekar Adiga, Shrikanth A. S., Shivakumar Swamy C.S.

(Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysore-570006, India)
E-mail: c_ adiga@hotmail.com, shrikanth.ait@gmail.com, cskswamy@gmail.com

Abstract

Let G be a graph with vertex set V and edge set E, and $Z_{2}=\{0,1\}$. Let f be a labeling from E to Z_{2}, so that the labels of the edges are 0 or 1 . The edges labelled 1 are called 1-edges and edges labelled 0 are called 0 -edges. The edge labeling f induces a vertex labeling $f^{*}: V \longrightarrow Z_{2}$ defined by $$
f^{*}(v)= \begin{cases}1 & \text { if the number of 1-edges incident on } v \text { is odd } \\ 0 & \text { if the number of 1-edges incident on } v \text { is even }\end{cases}
$$

For $i \in Z_{2}$ let $e_{f}(i)=e(i)=|\{e \in E: f(e)=i\}|$ and $v_{f}(i)=v(i)=\left|\left\{v \in V: f^{*}(v)=i\right\}\right|$. A labeling f is said to be edge-friendly if $|e(0)-e(1)| \leq 1$. The 1- edge balance index set $(O E B I)$ of a graph G is defined by $\left\{\left|v_{f}(0)-v_{f}(1)\right|\right.$: the edge labeling f is edge-friendly $\}$. The main purpose of this paper is to completely determine the 1-edge balance index set of wheel and Mycielskian graph of a path.

Key Words: Mycielskian graph, edge labeling, edge-friendly, 1-edge balance index set, Smarandachely induced vertex labeling, Smarandachely edge-friendly graph.

AMS(2010): 05C78

§1. Introduction

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. Varieties of graph labeling have been investigated by many authors [2], [3] [5] and they serve as useful models for broad range of applications.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$ and $Z_{2}=\{0,1\}$. Let f be a labeling from $E(G)$ to Z_{2}, so that the labels of the edges are 0 or 1 . The edges labelled 1 are called 1-edges and edges labelled 0 are called 0 -edges. The edge labeling f induces a vertex labeling $f^{*}: V(G) \longrightarrow Z_{2}$, defined by

$$
f^{*}(v)= \begin{cases}1 & \text { if the number of 1-edges incident on } v \text { is odd } \\ 0 & \text { if the number of 1-edges incident on } v \text { is even }\end{cases}
$$

For $i \in Z_{2}$, let $e_{f}(i)=e(i)=|\{e \in E(G): f(e)=i\}|$ and $v_{f}(i)=v(i)=\mid\{v \in V(G)$: $\left.f^{*}(v)=i\right\} \mid$. Generally, let $f: E(G) \rightarrow Z_{p}$ be a labeling from $E(G)$ to Z_{p} for an integer

[^0]$p \geq 2$. A Smarandachely induced vertex labeling on G is defined by $f^{v}=\left(l_{1}, l_{2}, \cdots, l_{p}\right)$ with $n_{k}(v) \equiv l_{k}(\bmod p)$, where $n_{k}(v)$ is the number of k-edges, i.e., edges labeled with an integer k incident on v. Let
$$
e_{k}(G)=\frac{1}{2} \sum_{e \in E(G)} n_{k}(v)
$$
for an integer $1 \leq k \leq p$. Then a Smarandachely edge-friendly graph is defined as follows.

Definition 1.1 A graph G is said to be Smarandachely edge-friendly if $\left|e_{k}(G)-e_{k+1}(G)\right| \leq 1$ for integers $1 \leq k \leq p$. Particularly, if $p=2$, such a Smarandachely edge-friendly graph is abbreviated to an edge-friendly graph.

Definition 1.2 The 1-edge balance index set of a graph G, denoted by $\operatorname{OEBI}(G)$, is defined as $\left\{\left|v_{f}(1)-v_{f}(0)\right|: f\right.$ is edge-friendly $\}$.

For convenience, a vertex is called 0 -vertex if its induced vertex label is 0 and 1 -vertex, if its induced vertex label is 1 .

In the mid $20^{t h}$ century there was a question regarding the construction of triangle-free k-chromatic graphs, where $k \leq 3$. In this search Mycielski [4] developed an interesting graph transformation known as the Mycielskian which is defined as follows:

Definition 1.3 For a graph $G=(V, E)$, the Mycielskian of G is the graph $\mu(G)$ with vertex set consisting of the disjoint union $V \cup V^{\prime} \cup\left\{v_{0}\right\}$, where $V^{\prime}=\left\{x^{\prime}: x \in V\right\}$ and edge set $E \cup\left\{x^{\prime} y: x y \in E\right\} \cup\left\{x^{\prime} v_{0}: x^{\prime} \in V^{\prime}\right\}$.

Figure 1 Mycielskian graph of the path P_{n}
Recently Chandrashekar Adiga et al. [1] have introduced and studied the 1-edge balance index set of several classes of graphs. In Section 2, we completely determine the 1edge balance index set of the Mycielskian graph of path P_{n}. In Section 3, we establish that $\operatorname{OEBI}\left(W_{n}\right)=\{0,4,8 \ldots, n\}$ if $n \equiv 0(\bmod 4), \operatorname{OEBI}\left(W_{n}\right)=\{2,6,10 \ldots, n\}$ if $n \equiv 2(\bmod 4)$ and $\operatorname{OEBI}\left(W_{n}\right)=\{1,2,5 \ldots, n\}$ if n is odd.

$\S 2$. The 1-Edge Balance Index Set of $\mu\left(P_{n}\right)$

In this section we consider the Mycielskian graph of the path $P_{n}(n \geq 2)$, which consists of $2 n+1$ vertices and $4 n-3$ edges. To determine the $\operatorname{OEBI}\left(\mu\left(P_{n}\right)\right)$ we need the following theorem, whose proof is similar to the proof of the Theorem 1 in [6].

Theorem 2.1 If the number of vertices in a graph G is even(odd) then the 1-edge balance index set contains only even(odd)numbers.

Now we divide the problem of finding $\operatorname{OEBI}\left(\mu\left(P_{n}\right)\right)$ into two cases, viz,

$$
n \equiv 0(\bmod 2) \quad \text { and } \quad n \equiv 1(\bmod 2)
$$

Denoted by $\max \left\{\operatorname{OEBI}\left(\mu\left(P_{n}\right)\right)\right\}$ the largest number in the 1-edge balance index set of $\mu\left(P_{n}\right)$. Then we get the follpowing result.

Theorem 2.2 If $n \equiv 0(\bmod 2)$ i.e, $n=2 k(k \in N)$, then $O E B I\left(\mu\left(P_{n}\right)\right)=\{1,3,5, \ldots, 2 n+1\}$.
Proof Let f be an edge-friendly labeling on $\mu\left(P_{n}\right)$. Since the graph contains $2 n+1=4 k+1$ vertices, $4 n-3=8 k-3$ edges, we have two possibilities: i) $e(0)=4 k-1, e(1)=4 k-2$ ii) $e(0)=4 k-2, e(1)=4 k-1$. Now we consider the first case namely $e(0)=4 k-1$ and $e(1)=4 k-2$. Denote the vertices of $\mu\left(P_{n}\right)$ as in the Figure 1. Now we label the edges $u_{2 q-1} v_{2 q}$, $u_{2 q+1} v_{2 q}$ for $1 \leq q \leq k-1, u_{q} u_{q+1}$ for $1 \leq q \leq 2 k-3, u_{2 k-2} v_{2 k-1}, u_{2 k} v_{2 k-1}$ and $u_{2 k-1} u_{2 k}$ by 1 and label the remaining edges by 0 . Then it is easy to observe that $v(0)=4 k+1$ and there is no 1 -vertex in the graph. Thus $|v(1)-v(0)|=4 k+1=2 n+1=\max \left\{O E B I\left(\mu\left(P_{n}\right)\right)\right\}$.

Now we interchange the labels of the edges to get the remaining 1-edge balance index numbers. By interchanging the labels of edges $u_{2 q} u_{2 q+1}$ and $u_{2 q} v_{2 q+1}$ for $1 \leq q \leq k-2$, we get, $|v(0)-v(1)|=4 k+1-4 q$. Further interchanging $u_{2 k-1} u_{2 k}$ and $u_{2 k-1} v_{2 k}$, we get $|v(0)-v(1)|=5$.

In the next four steps we interchange two pairs of edges as follows to see that $1,3,7,11 \in$ $\operatorname{OEBI}\left(\mu\left(P_{n}\right)\right)$
$u_{1} v_{2}$ and $v_{1} v_{0}, u_{2} v_{3}$ and $v_{2} v_{0}$.
$u_{3} v_{2}$ and $v_{3} v_{0}, u_{3} v_{4}$ and $v_{4} v_{0}$.
$u_{4} v_{5}$ and $v_{5} v_{0}, u_{5} v_{4}$ and $v_{6} v_{0}$.
$u_{5} v_{6}$ and $v_{7} v_{0}, u_{6} v_{7}$ and $v_{8} v_{0}$.

Now we interchange $u_{2\left\lfloor\frac{q-1}{2}\right\rfloor+7} v_{2\left\lceil\frac{q-1}{2}\right\rceil+6}$ and $v_{2 q+7} v_{0}, u_{2 q+6} v_{2 q+7}$ and $v_{2 q+8} v_{0}$ for $1 \leq q \leq$ $k-5$ to obtain $|v(0)-v(1)|=4 q+11$. Finally by interchanging the labels of the edges $u_{2\left\lfloor\frac{k-5}{2}\right\rfloor+7} v_{2\left\lceil\frac{k-5}{2}\right\rceil+6}$ and $u_{2 k-2} u_{2 k-1}$ we get $|v(0)-v(1)|=4 k-5$ and $u_{2\left\lfloor\frac{k-4}{2}\right\rfloor+7} v_{2\left\lceil\frac{k-4}{2}\right\rceil+6}$ and $u_{2 k-1} v_{0}$ we get $|v(0)-v(1)|=4 k-1$.

Proof of the second case follows similarly. Thus

$$
O E B I\left(\mu\left(P_{n}\right)\right)=\{1,3,5, \cdots, 2 n+1\}
$$

Theorem 2.3 If $n \equiv 1(\bmod 2)$ i.e, $n=2 k+1(k \in N)$, then $\operatorname{OEBI}\left(\mu\left(P_{n}\right)\right)=\{1,3,5, \ldots$, $2 n+1\}$.

Proof Let f be an edge-friendly labeling on $\mu\left(P_{n}\right)$. Since the graph contains $2 n+1=4 k+3$ vertices, $4 n-3=8 k+1$ edges, we have two possibilities: i) $e(0)=4 k+1, e(1)=4 k$ ii) $e(0)=4 k, e(1)=4 k+1$. Now we consider the first case namely $e(0)=4 k+1$ and $e(1)=4 k$. Denote the vertices of $\mu\left(P_{n}\right)$ as in the Figure 1. Now we label the edges $u_{2 q-1} v_{2 q}$, $u_{2 q+1} v_{2 q}$ for $1 \leq q \leq k$ and $u_{q} u_{q+1}$ for $1 \leq q \leq 2 k$ by 1 and label the remaining edges by 0 . Then it is easy to observe that $v(0)=4 k+3$ and there is no 1 -vertex in the graph. Thus $|v(1)-v(0)|=4 k+3=2 n+1=\max \left\{O E B I\left(\mu\left(P_{n}\right)\right)\right\}$.

Now we interchange the labels of the edges to get the remaining 1-edge balance index numbers. By interchanging the labels of edges $u_{2 q} u_{2 q+1}$ and $u_{2 q} v_{2 q+1}$ for $1 \leq q \leq k$ we get $|v(0)-v(1)|=4 k+3-4 q$. Further interchanging $u_{2 k} v_{2 k+1}$ and $v_{2 k+1} v_{0}$ we get $|v(0)-v(1)|=1$.

In the next four steps we interchange two pairs of edges as follows to see that $5,9,13.17 \in$ $\operatorname{OEBI}\left(\mu\left(P_{n}\right)\right)$
$u_{1} v_{2}$ and $v_{1} v_{0}, u_{2} v_{3}$ and $v_{2} v_{0}$.
$u_{3} v_{2}$ and $v_{3} v_{0}, u_{3} v_{4}$ and $v_{4} v_{0}$.
$u_{4} v_{5}$ and $v_{5} v_{0}, u_{5} v_{4}$ and $v_{6} v_{0}$.
$u_{5} v_{6}$ and $v_{7} v_{0}, u_{6} v_{7}$ and $v_{8} v_{0}$.
And finally by interchanging the labels of edges $u_{2\left\lfloor\frac{q-1}{2}\right\rfloor+7} v_{2\left\lceil\frac{q-1}{2}\right\rceil+6}$ and $v_{2 q+7} v_{0}, u_{2 q+6} v_{2 q+7}$ and $v_{2 q+8} v_{0}$ for $1 \leq q \leq k-4$, we Obtain $|v(0)-v(1)|=4 q+17$.

Proof of the second case follows similarly. Thus

$$
O E B I\left(\mu\left(P_{n}\right)\right)=\{1,3,5, \ldots, 2 n+1\}
$$

§3. The 1-Edge Balance Index Set of Wheel

In this section we consider the wheel, denoted by W_{n} which consists of n vertices and $2 n-2$ edges. To determine the $\operatorname{OEBI}\left(W_{n}\right)$ we consider four cases, namely,

$$
\begin{array}{ll}
n \equiv 0(\bmod 4), & n \equiv 1(\bmod 4) \\
n \equiv 2(\bmod 4), & n \equiv 3(\bmod 4)
\end{array}
$$

Theorem 3.1 If $n \equiv 0(\bmod 4)$ i.e, $n=4 k(k \in N)$, then $\operatorname{OEBI}\left(W_{n}\right)=\{0,4,8, \ldots, n\}$.
Proof Let f be an edge-friendly labeling on W_{n}. Since the graph contains $n=4 k$ vertices, $2 n-2=8 k-2$ edges, we must have $e(0)=e(1)=4 k-1$. Denote the vertices on the rim of the wheel by $v_{0}, v_{1}, v_{2}, \cdots, v_{4 k-1}$ and denote the center by v_{0}. Now we label the edges $v_{q} v_{q+1}$ for $1 \leq q \leq 4 k-2$ and $v_{4 k-1} v_{1}$ by 1 and label the remaining edges by 0 . Then it is easy to observe that $v(0)=4 k$ and there is no 1-vertex in the graph. Thus $|v(1)-v(0)|=4 k=n=$ $\max \left\{O E B I\left(W_{n}\right)\right\}$.

Now we interchange the labels of the edges to get the remaining 1-edge balance index numbers. By interchanging the labels of edges $v_{2 q-1} v_{2 q}$ and $v_{2 q-1} v_{0}, v_{2 q} v_{2 q+1}$ and $v_{2 q} v_{0}$ for $1 \leq q \leq k$ we get $|v(0)-v(1)|=4 k-4 q$. Thus $0,4,8, \cdots, n$ are elements of $O E B I\left(W_{n}\right)$.

Let $a_{i}=\operatorname{card}\{v \in V \mid$ number of 1-edges incident on v is equal to $i\}, i=1,2,3, \ldots, 4 k-1$. Then we have

$$
\sum_{i=1}^{4 k-1} i a_{i}=a_{1}+2 a_{2}+3 a_{3}+, \ldots,+(4 k-1) a_{4 k-1}=8 k-2
$$

implies that $a_{1}+3 a_{3}+5 a_{5}+\ldots,+(4 k-1) a_{4 k-1}$ is even, which is possible if and only if, $a_{1}+a_{3}+a_{5}+, \ldots,+a_{4 k-1}$ is even, that is, the number of 1 -vertices is even and hence the number of 0 -vertices is also even. Therefore, the numbers $2,6,10, \ldots, n-2$ are not elements of $\operatorname{OEBI}\left(W_{n}\right)$.

Theorem 3.2 If $n \equiv 1(\bmod 4)$ i.e, $n=4 k+1(k \in N)$, then $\operatorname{OEBI}\left(W_{n}\right)=\{1,3,5, \ldots, n\}$.
Proof Let f be an edge-friendly labeling on W_{n}. Since the graph contains $n=4 k+1$ vertices, $2 n-2=8 k$ edges, we must have $e(0)=e(1)=4 k$. Denote the vertices on the rim of the wheel by $v_{0}, v_{1}, v_{2}, \cdots, v_{4 k}$ and denote the center by v_{0}. Now we label the edges $v_{q} v_{q+1}$ for $1 \leq q \leq 4 k-1$ and $v_{4 k} v_{1}$ by 1 and label the remaining edges by 0 . Then it is easy to observe that $v(0)=4 k+1$ and there is no 1-vertex in the graph. Thus $|v(1)-v(0)|=4 k+1=n=$ $\max \left\{O E B I\left(W_{n}\right)\right\}$.

Now we interchange the labels of the edges to get the remaining 1-edge balance index numbers. By interchanging the labels of edges $v_{2 q-1} v_{2 q}$ and $v_{2 q-1} v_{0}, v_{2 q} v_{2 q+1}$ and $v_{2 q} v_{0}$ for $1 \leq q \leq 2 k-1$, we get $|v(0)-v(1)|=|4 k+1-4 q|$ and by interchanging the labels of edges $v_{4 k-1} v_{4 k}$ and $v_{4 k-1} v_{0}, v_{4 k} v_{1}$ and $v_{4 k} v_{0}$, we get $|v(0)-v(1)|=4 k-1$. Thus

$$
O E B I\left(W_{n}\right)=\{1,3,5, \ldots, n\} .
$$

Similarly one can prove the following results.

Theorem 3.3 If $n \equiv 2(\bmod 4)$ i.e, $n=4 k+2(k \in N)$, then $\operatorname{OEBI}\left(W_{n}\right)=\{2,6,10, \ldots, n\}$.
Theorem 3.4 If $n \equiv 3(\bmod 4)$ i.e, $n=4 k+3(k \in N)$, then $\operatorname{OEBI}\left(W_{n}\right)=\{1,3,5, \ldots, n\}$.

References

[1] Chandrashekar Adiga, C.K.Subbaraya, Shrikanth A. S., Sriraj M. A., On 1-edge balance index set of some graphs, Proc. Jang. Math. Soc., 14(2011), 319-331.
[2] L.W.Beineke and S.M.Hegde, Strongly multiplicative graphs, Discuss. Math. Graph Theory, 21(2001), 63-76.
[3] I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23(1987), 201-207.
[4] J.Mycielski, Sur le coloriage des graphs, Colloq. Math,, 3(1955), 161-162.
[5] A.Rosa, On certain valuations of vertices of a graph, Internat. symposium, Rome, July 1976, Gordon, New York,Breach and Dunod, Paris 1967.
[6] Yuge Zheng and Ying Wang, On the Edge-balance Index sets of $C_{n} \times P_{2}$, 2010 International Conference on Networking and Digital Society, 2(2010)360-363.

[^0]: ${ }^{1}$ Received June 28, 2011. Accepted September 20, 2012.

