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Abstract Vyawahare and Purohit [1] introduced the near pseudo Smarandache function,

K(n). In this paper, we derive some more recurrence formulas satisfied by K(n). We also

derive some new series, and give an expression for the sum of the first n terms of the sequence

{K(n)}.
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§1. Introduction

Vyawahare and Purohit [1] introduced a new function, called the near pseudo Smarandache
function, and denoted by K(n), is defined as follows. 　　　　　　

Definition 1.1. The near pseudo Smarandache function, K : N −→ N , is

K(n) =
n∑

i=1

i + k(n),

where k(n) = min
{

k : k ∈ N, n|
n∑

i=1

i + k

}
.

The following theorem, due to Vyawahare and Purohit [1], gives explicit expressions for
k(n) and K(n).

Theorem 1.1. For any n ∈ N ,

k(n) =





n, if n is odd,
n

2
, if n is even.

with

K(n) =





n(n + 3)
2

, if n is odd,
n(n + 2)

2
, if n is even.

In [1], Vyawahare and Purohit give a wide range of results related to the near pseudo
Smarandache function. Some of them are given in the following lemmas.

Lemma 1.1. K(2n + 1)−K(2n) = 3n + 2, for any integer n ∈ N .
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Lemma 1.2. K(2n + 1)−K(2n− 1) = 4n + 3, for any integer n ∈ N .
This paper gives some recurrence relations satisfied by the near pseudo Smarandache func-

tion K(n). These are given in Section 2. In Section 3, we give some series involving the
functions K(n) and k(n). We also give an explicit expression for the sum of the first n terms
of the sequences {K(n)}∞n=1 and{k(n)}∞n=1. We conclude this paper with some remarks in the
final Section 4.

§2. More recurrence relations

In this section, we derive some new recurrence relations that are satisfied by the near
pseudo Smarandache function K(n). 　　　

Lemma 2.1. For any integer n ∈ N ,

K(2n)−K(2n− 1) = n + 1

Proof. Writing K(2n)−K(2n− 1) in the following form, and then using Lemma 1.2 and
Lemma 1.1 (in this order), we get

K(2n)−K(2n− 1) = [K(2n + 1)−K(2n− 1)]− [K(2n + 1)−K(2n)]

= (4n + 3)− (3n + 2),

which now gives the desired result. 　
We now have the following result. 　　
Corollary 2.1. K(n) is strictly increasing in n.
Proof. From Theorem 1.1, we see that both the subsequences {K(2n− 1)}∞n=1 and

{K(2n)}∞n=1 are strictly increasing. This, together with Lemma 1.1 and Lemma 2.1, shows
that{K(n)}∞n=1 is strictly increasing. 　

Lemma 2.2. For any integer n ∈ N ,

K(2n + 2)−K(2n) = 4(n + 1).

Proof. Using Theorem 1.1, we get

K(2n + 2)−K(2n) =
(2n + 2)(2n + 4)

2
− (2n)(2n + 2)

2
= 4(n + 1),

after some algebraic simplifications.
Lemma 1.2 shows that the subsequence {K(2n− 1)}∞n=1 is strictly convex in the sense that

K(2n + 3)−K(2n + 1) = 4n + 7 > 4n + 3 = K(2n + 1)−K(2n− 1).

From Lemma 2.2, we see that the subsequence {K(2n)}∞n=1 is also strictly convex, since

K(2n + 4)−K(2n + 2) = 4(n + 2) > 4(n + 1) = K(2n + 2)−K(2n).

However, the sequence {K(n)}∞n=1 is not convex, since

K(2n + 2)−K(2n + 1) = n + 2 < 3n + 2 = K(2n + 1)−K(2n).
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Note that

K(2n + 1)−K(2n) = 3n + 2 > n + 1 = K(2n)−K(2n− 1).

Corollary 2.2. K(n + 1) = K(n) has no solution.
Proof. If n is odd, say, n = 2m− 1 for some integer m > 1, then from Lemma 2.1,

K(2m)−K(2m− 1) = m + 1 > 0,

and if n is even, say, n = 2m for some integer m > 1, then from Lemma 1.1,

K(2m + 1)−K(2m) = 3m + 2 > 0.

These two inequalities establish the result.
Corollary 2.3. K(n + 2) = K(n) has no solution.
Proof. If n is odd, say, n = 2m− 1 for some integer m > 1, then from Lemma 1.2,

K(2m + 1)−K(2m− 1) = 4m + 3 > 0,

and if n is even, say, n = 2m for some integer m > 1, then from Lemma 2.2,

K(2m + 2)−K(2m) = 4(m + 1) > 0.

Thus, the result is established.
Lemma 2.3. For any integers m,n ∈ N with m > n,
(1) K(2m− 1)−K(2n− 1) = (m− n)(2m + 2n + 1),
(2) K(2m)−K(2n) = 2(m− n)(m + n + 1).
Proof. For any integers m and n with m ≥ n ≥ 1, from Theorem 1.1,
(1)K(2m− 1)−K(2n− 1) = (2m− 1)(m + 1)− (2n− 1)(n + 2)
= 2(m2 − n2) + (m− n)
= (m− n)(2m + 2n + 1),
(2) K(2m)−K(2n) = 2m(m + 1)− 2n(n + 2)
= 2(m2 − n2) + 2(m− n)
= 2(m− n)(m + n + 1),

which we intended to prove.
Corollary 2.4. For any integers m,n ∈ N with m > n,

(1) K(2m− 1)−K(2n− 1) =
m− n

m + n + 2
K(2m + 2n + 1),

(2) K(2m)−K(2n) =
m− n

m + n
K(2m + 2n).

Proof. Let n and m be any two integers with n ≥ m ≥ 1.
(1) Since

K(2m + 2n + 1) = (m + n + 2)(2m + 2n + 1),

we get the result by virtue of part (1) of Lemma 2.3 above.
(2) Note that
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K(2m + 2n) = 2(m + n)(m + n + 1).

This, together with part (2) of Lemma 2.3, gives the desired result.
It may be mentioned here that, Lemma 1.2 is a particular case of part (1) of Corollary

2.4(when m = n + 1) and Lemma 2.2 is a particular case of part (2) of Corollary 2.4 (when
m = n + 1).

§3. Series involving the functions K(n) and k(n)

In this section, we derive some results in series involving K(n) and k(n). We also give
explicit expressions of the n− th partial sums in both the cases.

Lemma 3.1. For any integer n ∈ N ,

(1)
n∑

m=1
[K(2m)−K(2m− 1)] =

n(n + 3)
2

,

(2)
n∑

m=1
[K(2m + 1)−K(2m)] = 3

n(n + 3)
2

− n =
n(3n + 7)

2
.

Proof. (1) From Lemma 2.1,
K(2m)−K(2m− 1) = m + 1 for any integer m ≥ 1.

Now, summing over m from 1 to n, we get

n∑
m=1

[K(2m)−K(2m− 1)] =
n∑

m=1

(m + 1) =
n(n + 1)

2
+ n =

n(n + 3)
2

,

which is the result desired.
(2) From Lemma 1.1,
K(2m + 1)−K(2m) + 1 = 3(m + 1) for any integer m ≥ 1.

Therefore, summing over m from 1 to n, we get

n∑
m=1

[K(2m + 1)−K(2m) + 1] = 3
n∑

m=1

(m + 1) = 3
{

n(n + 1)
2

+ n

}
= 3

n(n + 3)
2

,

that is,
n∑

m=1

[K(2m + 1)−K(2m)] + n = 3
n(n + 3)

2

from which the desired result follows immediately.
Corollary 3.1. If n is an odd integer, then

(1)
n∑

m=1
[K(2m)−K(2m− 1)] = K(n),

(2)
n∑

m=1
[K(2m + 1)−K(2m)] = 3K(n)− n.

Proof. Both the results follow immediately by virtue of Theorem 1.1 and Lemma 3.1.
Let {Sn} be the sequence of n− th partial sums of the sequence {K(n)}∞n=1, so that

Sn =
n∑

m=1

K(m), n > 1
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and likewise, let {sn} be the sequence of n− th partial sums of {k(n)}∞n=1.
Then, we have the following result. 　　　　　　　　　　　　　　　

Lemma 3.2. For any integer n ≥ 1,
(1) S2n =

n

6
(8n2 + 21n + 7),

(2) S2n+1 =
1
6
(8n3 + 33n2 + 37n + 12). 　　　　　　

Proof. From Theorem 1.1, for any integer m ≥ 1,

K(2m− 1) + K(2m) = (2m− 1)(m + 1) + 2m(m + 1) = 4m2 + 3m− 1.

(1) Since S2n can be written as 　　　

S2n = K(1) + K(2) + · · ·+ K(2n) =
n∑

m=1

[K(2m− 1) + K(2m)],

we get,

S2n =
n∑

m=1

(4m2 + 3m− 1) = 4
n∑

m=1

m2 + 3
n∑

m=1

m− n

= 4
{

n(n + 1)(2n + 1)
6

}
+ 3

{
n(n + 1)

2

}
− n

which now gives the desired result after some algebraic simplifications.
(2) Since 　S2n+1 = S2n + K(2n + 1)　

from part (1) above, together with Theorem 1.1, we get 　　　

S2n+1 =
n

6
(8n2 + 21n + 7) + (2n + 1)(2n + 3),

which gives the desired expression for S2n+1 after algebraic manipulations.
From Definition 1.1, we see that

k(2n− 1) = 2n− 1 = k(2(2n− 1)) for any integer n ≥ 1.

It then follows that the n − th term of the subsequence {k(2n− 1)}∞n=1 is 2n − 1, while the
n− th term of the subsequence {k(2n)}∞n=1 is n.

Lemma 3.3. For any integer n ≥ 1,
(1) s2n =

n

2
(3n + 1),

(2) s2n+1 =
1
2
(3n2 + 5n + 2).　　

Proof. We first note that, for any integer m ≥ 1,

k(2m− 1) + k(2m) = 2m− 1 + m = 3m− 1.

(1) We get the result from the following expression for s2n :

s2n = k(1) + k(2) + · · ·+ k(2n) =
n∑

m=1

[k(2m− 1) + k(2m)] =
n∑

m=1

(3m− 1).

(2) Using part (1) above, we get

s2n+1 = s2n + k(2n + 1) =
n

2
(3n + 1) + (2n + 1),
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which gives the result after some algebraic simplifications.
Lemma 3.4. For any integer n ≥ 0,

n∑
m=0

K(am) =





1
2

an+1 − 1
a2 − 1

(an+1 + 3a + 4), if a is odd

1
2

[
an+1 − 1
a2 − 1

(an+1 + 2a + 3) + 1
]

, if a is even

Proof. We consider the two cases separately.
(1) When a is odd.

In this case,

n∑
m=0

K(am) =
n∑

m=0

am(am + 3)
2

=
1
2

(
n∑

m=0

a2m + 3
n∑

m=0

am

)
.

Now, the first series on the right is a geometric series with common ratio a2, while the second
one is geometric with common ratio a. Therefore,

n∑
m=0

K(am) =
1
2

(
a2(n+1) − 1

a2 − 1
+ 3

an+1 − 1
a− 1

)
,

which gives the desired result after some algebraic simplifications.
(2) When a is even.

In this case,

n∑
m=0

K(am) = 2 +
n∑

m=1

am(am + 2)
2

=
1
2

(
1 +

n∑
m=0

a2m

)
+

n∑
m=0

am

=
1
2

(
1 +

a2(n+1) − 1
a2 − 1

)
+

an+1 − 1
a− 1

.

Now, simplifying the above, we get the result desired.

It can be shown that (see Yongfeng Zhang [2]) the series
∞∑

n=1

1
[K(n)]s

is convergent for any

real number s >
1
2
, and

∞∑
n=1

1
[K(n)]s

is convergent for any real number s > 1 (Yu Wang [3])

with

n∑
n=1

1
[k(n)]s

= ζ(s)(2− 1
2s

),

where ζ(s) is the Riemann zeta function.

§4. Some remarks

Since
n(n + 3)

2
> n,

n(n + 2)
2

> n for any integer n > 1,

it follows that K(n) > n for any integer n ≥ 1. A consequence of this is that, the equation
K(n) = n has no solution.
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Let Tm be the m− th triangular number, that is

Tm =
m(m + 1)

2
,m ≥ 1.

Then, Tm satisfies the following recurrence relation :

Tm+1 = Tm + m + 1,m ≥ 1.

Now, by Definition 1.1,

K(m)− k(m) = Tm,m ≥ 1,

so that
K(m)− [k(m)−m] + 1 = Tm + (m + 1) = Tm+1.

Now, if m is odd, say, m = 2n− 1 (for some integer n ≥ 1), then k(m)−m = 0, so that

K(2n− 1) + 1 = T2n

is a triangular number.
Again, since

K(m)−
[
k(m)− m

2

]
+

m

2
+ 1 = Tm+1,

it follows that, when m is even, say, m = 2n (for some integer n ≥ 1), then

K(2n− 1) + n + 1 = T2n+1

is a triangular number.
In a recent paper, [2] introduced a new function, which may be called the near pseudo

Smarandache function of order t, where t ≥ 1 is a fixed integer, and is defined as

Kt(n) =
n∑

i=1

it + kt(n), for any n ∈ N

where

kt(n) = min

{
k : k ∈ N, n|

n∑

i=1

it + k

}
.

Then, the function introduced by Vyawahare and Purohit [1] is the near pseudo Smarandache
function of order 1, that is,

K(n) = K1(n) with k(n) = k1(n), n ∈ N.

In [3], Yu Wang has given the explicit expressions for k2(n) and k3(n), including the
convergence of two infinite series involving these two functions. But the properties of Kt(n)
and kt(n) still remain to be investigated. The following two lemmas give the expressions for
k2(n) and k3(n), due to Yu Wang [3].

Lemma 4.1. For any integer n ≥ 1,
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k2(n) =





5n

6
, if n = 6m

n

3
, if n = 3(2m + 1)

n, if n = 6m + 1 or n = 6m + 5
n

2
, if n = 2(3m + 1) or n = 2(3m + 2)

Lemma 4.2. For any integer n ≥ 1,

k3(n) =





n

2
, if n = 2(2m + 1)

n, otherwise

Using the above two lemmas, we get the expressions for K2(n) and K3(n), given below.
Lemma 4.3. For any integer n ≥ 1,

K2(n) =





n

6
(n2 + 3n + 6), if n = 6m

n

6
(n2 + 3n + 3), if n = 3(2m + 1)

n

6
(n2 + 3n + 7), if n = 6m + 1 or n = 6m + 5

n

6
(n2 + 3n + 4), if n = 2(3m + 1) or n = 2(3m + 2)

Lemma 4.4. For any integer n ≥ 1,

K3(n) =





1
4
n(n + 2)(n2 + 1), if n = 2(2m + 1)

1
4
n(n3 + 2n2 + n + 4), otherwise
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