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On a note of the Smarandache power function 1
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Abstract For any positive integer n, the Smarandache power function SP (n) is defined as the

smallest positive integer m such that n|mm, where m and n have the same prime divisors. The

main purpose of this paper is to study the distribution properties of the k−th power of SP (n)

by analytic methods, obtain three asymptotic formulas of
∑

n≤x

(SP (n))k,
∑

n≤x

ϕ((SP (n))k) and

∑
n≤x

d(SP (n))k (k > 1), and supplement the relate conclusions in some references.
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§1. Introduction and results

For any positive integer n, we define the Smarandache power function SP (n) as the smallest
positive integer m such that n|mm, where n and m have the same prime divisors. That is,

SP (n) = min
{

m : n|mm,m ∈ N+,
∏

p|m
p =

∏

p|n
p

}
.

If n runs through all natural numbers, then we can get the Smarandache power function se-
quence SP (n): 1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, · · · , Let n = pα1

1 pα2
2 · · · pαk

k ,
denotes the factorization of n into prime powers. If αi < pi, for all αi (i = 1, 2, · · · , r), then
we have SP (n) = U(n), where U(n) =

∏
p|n

p,
∏
p|n

denotes the product over all different prime

divisors of n. It is clear that SP (n) is not a multiplicative function.
In reference [1], Professor F. Smarandache asked us to study the properties of the sequence

SP (n). He has done the preliminary research about this question literature [2] − [4], has
obtained some important conclusions. And literature [2] has studied an average value, obtained
the asymptotic formula:

∑

n≤x

SP (n) =
1
2
x2

∏
p

(
1− 1

p(1 + p)

)
+ O

(
x

3
2+ε

)
.
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Literature [3] has studied the infinite sequence astringency, has given the identical equation:

∞∑
n=1

(−1)µ(n)

(SP (nk))s
=





2s + 1
(2s − 1)ζ(s)

, k = 1, 2;

2s + 1
(2s − 1)ζ(s)

− 2s − 1
4s

, k = 3;

2s + 1
(2s − 1)ζ(s)

− 2s − 1
4s

+
3s − 1

9s
, k = 4, 5.

And literature [4] has studied the equation SP (nk) = φ(n), k = 1, 2, 3 solubility (φ(n) is the
Euler function), and has given all positive integer solution. Namely the equation SP (n) = φ(n)
only has 4 positive integer solutions n = 1, 4, 8, 18; Equation SP (n3) = φ(n) to have and
only has 3 positive integer solutions n = 1, 16, 18. In this paper, we shall use the analysis
method to study the distribution properties of the k − th power of SP (n), gave

∑
n≤x

(SP (n))k,
∑

n≤x

ϕ((SP (n))k) and
∑

n≤x

d(SP (n))k (k > 1), some interesting asymptotic formula, has pro-

moted the literature [2] conclusion.
Specifically as follows:
Theorem 1.1. For any random real number x ≥ 3 and given real number k (k > 0), we

have the asymptotic formula:

∑

n≤x

(SP (n))k =
ζ(k + 1)

(k + 1)ζ(2)
xk+1

∏
p

(
1− 1

pk(p + 1)

)
+ O(xk+ 1

2+ε);

∑

n≤x

(SP (n))k

n
=

ζ(k + 1)
kζ(2)

xk
∏
p

(
1− 1

pk(p + 1)

)
+ O(xk+ 1

2+ε),

where ζ(k) is the Riemann zeta-function, ε denotes any fixed positive number, and
∏
p

denotes

the product over all primes.
Corollary 1.1. For any random real number x ≥ 3 and given real number k′ > 0 we have

the asymptotic formula:

∑

n≤x

(SP (n))
1
k′ =

6k′ζ( 1+k′
k′ )

(k′ + 1)π2
x

1+k′
k′

∏
p

(
1− 1

(1 + p)p
1
k′

)
+ O

(
x

k′+2
2k′ +ε

)
.

Specifically, we have

∑

n≤x

(SP (n))
1
2 =

4ζ( 3
2 )

π2
x

3
2

∏
p

(
1− 1

(1 + p)p
1
2

)
+ O(x1+ε);

∑

n≤x

(SP (n))
1
3 =

9ζ( 4
3 )

2π2
x

4
3

∏
p

(
1− 1

(1 + p)p
1
3

)
+ O(x

5
6+ε).

Corollary 1.2. For any random real number x ≥ 3, and k = 1, 2, 3. We have the asymp-
totic formula: ∑

n≤x

(SP (n)) =
1
2
x2

∏
p

(
1− 1

p(1 + p)

)
+ O(x

3
2+ε);

∑

n≤x

(SP (n))2 =
6ζ(3)
3π2

x3
∏
p

(
1− 1

p2(1 + p)

)
+ O(x

5
2+ε);
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∑

n≤x

(SP (n))3 =
π2

60
x4

∏
p

(
1− 1

p3(1 + p)

)
+ O(x

7
2+ε).

Theorem 1.2. For any random real number x ≥ 3, we have the asymptotic formula:

∑

n≤x

ϕ
(
(SP (n))k

)
=

ζ(k + 1)
(k + 1)ζ(2)

xk+1
∏
p

(
1− 1

(1 + p)pk

)
+ O(xk+ 1

2+ε),

where ϕ(n) is the Euler function
Theorem 1.3. For any random real number x ≥ 3, we have the asymptotic formula:

∑

n≤x

d
(
(SP (n))k

)
= B0x lnk x + B1x lnk−1 x + B2x lnk−2 x + · · ·+ Bk−1x lnx + Bkx + O(x

1
2+ε).

where d(n) is the Dirichlet divisor function and B0, B1, B2, · · · , Bk−1, Bk is computable con-
stant.

§2. Lemmas and proofs

Suppose s = σ + it and let n = pα1
1 pα2

2 · · · pαk

k , U(n) =
∏
p|n

p. Before the proofs of the

theorem, the following Lemmas will be useful.
Lemma 2.1. For any random real number x ≥ 3 and given real number k ≥ 1 , we have

the asymptotic formula:

∑

n≤x

(U(n))k =
ζ(k + 1)

(k + 1)ζ(2)
xk+1

∏
p

(
1− 1

(1 + p)pk

)
+ O(xk+ 1

2+ε).

Proof. Let Dirichlet’s series

A(s) =
∞∑

n=1

(U(n))k

ns
,

for any real number s > 1, it is clear that A(s) is absolutely convergent. Because U(n) is the
multiplicative function, if σ > k + 1, so from the Euler’s product formula [5] we have

A(s) =
∞∑

n=1

(U(n))k

ns

=
∏
p

( ∞∑
m=0

(U(pm))k

pms

)

=
∏
p

(
1 +

pk

ps
+

pk

p2s
+ · · ·

)

=
ζ(s)ζ(s− k)
ζ(2s− 2k)

∏
p

(
1− 1

pk(1 + ps−k)

)
,

where ζ(s) is the Riemann zeta-function. Letting R(k) =
∏
p

(
1 − 1

pk(1+ps−k)

)
. If σ > k +

1, |U(n)| ≤ n, |
∞∑

n=1

(U(n))k

nσ | < ζ(σ − k).
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Therefore by Perron’s formula [5] with a(n) = (U(n))k, s0 = 0, b = k + 3
2 , T = xk+ 1

2 ,
H(x) = x, B(σ) = ζ(σ − k), then we have

∑

n≤x

(U(n))k =
1

2πi

∫ k+ 3
2+iT

k+ 1
2−iT

ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
xs

s
ds + O(xk+ 1

2+ε),

where h(k) =
∏
p

(
1− 1

pk(1+p)

)
.

To estimate the main term

1
2πi

∫ k+ 3
2+iT

k+ 1
2−iT

ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
xs

s
ds,

we move the integral line from s = k + 3
2 ± iT to k + 1

2 ± iT , then the function

ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
xs

s

have a first-order pole point at s = k + 1 with residue

L(x) = Res
s=k+1

(
ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
)

= lim
s→k+1

(
(s− k − 1)

ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
xs

s

)

=
ζ(k + 1)

(k + 1)ζ(s)
xk+1h(k).

Taking T = xk+ 1
2 , we can easily get the estimate

∣∣∣∣∣
1

2πi

( ∫ k+ 3
2+iT

k+ 1
2+iT

+
∫ k+ 3

2+iT

k+ 1
2−iT

)
ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
xs

s
ds

∣∣∣∣∣ ¿
x2k+1

T
= xk+ 1

2 ,

∣∣∣∣∣
1

2πi

∫ k+ 1
2+iT

k+ 1
2−iT

ζ(s)ζ(s− k)
ζ(2s− 2k)

h(s)
xs

s
ds

∣∣∣∣∣ ¿ xk+ 1
2+ε.

We may immediately obtain the asymptotic formula

∑

n≤x

(U(n))k =
ζ(k + 1)

(k + 1)ζ(2)
xk+1

∏
p

(
1− 1

(1 + p)pk

)
+ O(xk+ 1

2+ε),

this completes the proof of the Lemma 2.1.
Lemma 2.2. For any random real number x ≥ 3 and given real number k ≥ 1, and

positive integer α, then we have
∑

pα≤x
α>p

(αp)k ¿ ln2k+2 x.

Proof. Because α > p, so pp < pα ≤ x, then

p <
lnx

ln p
< lnx, α ≤ lnx

ln p
,
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also,
∑

n≤x

nk =
xk+1

k + 1
+ O(xk). Thus,

∑
pα≤x
α>p

(αp)k =
∑

p≤ln x

pk
∑

α≤ ln x
ln p

αk ¿ lnk+1 x
∑

p≤ln x

pk

lnk+1 p
¿ lnk+1 x

∑

p≤ln x

pk.

Considering π(x) =
∑
p≤x

1, by virtue of [5], π(x) =
x

lnx
+ O

(
x

ln2 x

)
. we can get from the Able

∑

p≤x

pk = π(x)xk − k

∫ x

2

π(t)tk−1dt.

Therefore

∑

p≤ln x

pk =
lnk x

(k + 1)
+ O(lnk−1 x)− k

∫ ln x

2

tk

ln t
dt + O

( ∫ ln x

2

tk

ln2 t
dt

)
=

lnk x

k + 1
+ O(lnk−1 x).

Thus

∑
pα≤x
α>p

(αp)k =
∑

p≤ln x

pk
∑

α≤ ln x
ln p

αk ¿ lnk+1 x
∑

p≤ln x

pk

lnk+1 p
¿ lnk+1 x

∑

p≤ln x

pk ¿ ln2k+2 x.

This completes the proof of the Lemma 2.2.

§3. Proof of the theorem

In this section, we shall complete the proof of the theorem.
Proof of Theorem 1.1. Let A =

{
n|n = pα1

1 pα2
2 · · · pαk

k , αi ≤ pi, i = 1, 2, · · · , r
}
. When

n ∈ A : SP (n) = U(n); When n ∈ N+ : SP (n) ≥ U(n), thus
∑

n≤x

(SP (n))k −
∑

n≤x

(U(n))k =
∑

n≤x

[
(SP (n))k − (U(n))k

] ¿
∑
n≤x

SP (n)>U(n)

(SP (n))k.

By the [2] known, there is integer α and prime numbers p, so SP (n) < αp, then we can get
according to Lemma 2.2

∑
n≤x

SP (n)>U(n)

(SP (n))k <
∑
n≤x

SP (n)>U(n)

(αp)k ¿
∑

n≤x

∑
pα<x
α>p

¿ x ln2k+2 x.

Therefore ∑

n≤x

(SP (n))k −
∑

n≤x

(U(n))k ¿ x ln2k+2 x.

From the Lemma 2.1 we have
∑

n≤x

(SP (n))k =
ζ(k + 1)

(k + 1)ζ(2)
xk+1

∏
p

(1− 1
pk(1 + p)

) + O(xk+ 1
2+ε) + O(x ln2k+1 x)

=
ζ(k + 1)

(k + 1)ζ(2)
xk+1

∏
p

(1− 1
pk(1 + p)

) + O(xk+ 1
2+ε).
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This proves Theorem 1.1.
Proof of Corollary. According to Theorem 1.1, taking k = 1

k′ the Corollary 1.1 can be

obtained. Take k = 1, 2, 3, and ζ(2) =
π2

6
, ζ(4) =

π4

90
, we can achieve Corollary 1.2. Obviously

so is theorem [2].
Using the similar method to complete the proofs of Theorem 1.2 and Theorem 1.3.
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