ON A NUMBER SET RELATED TO THE K-FREE NUMBERS

Li Congwei
College of Electron and Information, Northwestern Ploytechnical University, Xi'an, Shaanxi, P.R.China

Abstract

Let F_{k} denotes the set of k-free number. For any positive integers $l \geq 2$, we define a number set $A_{k, l}$ as follows

$$
A_{k, l}=\left\{n: n=m^{l}+r, m^{l} \leq n<(m+1)^{l}, r \in F_{k}, n \in N\right\}
$$

In this paper, we study the arithmetical properties of the number set $A_{k, l}$, and give some interesting asymptotic formulae for it.

Keywords: Number set; k-free number; Asymptotic formula.

§1. Introduction

Let $k \geq 2$ be an integer. The k-free numbers set F_{k} is defined as follows

$$
F_{k}=\left\{n: \text { if prime } p \mid n \text { then } p^{k} \dagger n, n \in N\right\} .
$$

In problem 31 of [1], Professor F.Smarandache asked us to study the arithmetical properties of the numbers in F_{k}. About this problem, many authors had studied it, see [2], [3], [4]. For any positive integer n and $l \geq 2$, there exist an integer m such that

$$
m^{l} \leq n \leq(m+1)^{l}
$$

So we can define the following number set $A_{k, l}$:

$$
A_{k, l}=\left\{n: n=m^{l}+r, m^{l} \leq n<(m+1)^{l}, r \in F_{k}, n \in N\right\} .
$$

In this paper, we use the elementary methods to study the asymptotic properties of the number of integers in $A_{k, l}$ less than or equal to a fixed real number x, and give some interesting asymptotic formulae. That is, we shall prove the following results:

Theorem 1. Let $k, l \geq 2$ be any integers. Then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{\substack{n \leq x \\ n \in A_{k, l}}} 1=\frac{x}{\zeta(k)}+O_{k, l}\left(x^{\frac{1}{l}+\frac{1}{k}-\frac{1}{k l}}\right),
$$

where $\zeta(s)$ denotes the Riemann zeta function and $O_{k, l}$ means the big Oh constant related to k, l.

Theorem 2. Assuming the Riemann Hypothesis, there holds

$$
\sum_{\substack{n \leq x \\ n \in A_{2,2}}} 1=\frac{6}{\pi^{2}} x+O\left(x^{\frac{29}{44}+\epsilon}\right),
$$

where ϵ is any fixed positive number.

§2. Two Lemmas

Lemma 1. For any real number $x>1$ and integer $k \geq 2$, we have the asymptotic formula

$$
\sum_{\substack{n \leq x \\ n \in F_{k}}} 1=\frac{x}{\zeta(k)}+O\left(x^{\frac{1}{k}}\right) .
$$

Proof. See reference [5].
Lemma 2. Assuming the Riemann Hypothesis, we have

$$
\sum_{\substack{n \leq x \\ n \in F_{2}}} 1=\frac{6}{\pi^{2}} x+O\left(x^{\frac{7}{22}}+\epsilon\right) .
$$

Proof. See reference [6].

§3. Proof of the theorems

In this section, we shall complete the proofs of the theorems. For any real number $x \geq 1$ and integer $l \geq 2$, there exist a positive integer M such that

$$
\begin{equation*}
M^{l} \leq x<(M+1)^{l} . \tag{1}
\end{equation*}
$$

So from the definition of the number set $A_{k, l}$ and Lemma 1, we can write

$$
\begin{align*}
& \quad \sum_{\substack{n \leq x \\
n \in A_{k, l}}} 1=\sum_{t=1}^{M-1} \sum_{\substack{m=1 \\
m \in F_{k}}}^{(t+1)^{l}-t^{l}} 1 \sum_{\substack{m \leq x-M^{l} \\
m \in F_{k}}} 1 \\
& =\sum_{t=1}^{M-1} \frac{(t+1)^{l}-t^{l}}{\zeta(k)}+O\left(\sum_{t=1}^{M-1}\left((t+1)^{l}-t^{l}\right)^{\frac{1}{k}}\right) \\
& \quad+\frac{x-M^{l}}{\zeta(k)}+O\left(\left(x-M^{l}\right)^{\frac{1}{k}}\right) \\
& = \\
& \sum_{t=1}^{M-1} \frac{(t+1)^{l}-t^{l}}{\zeta(k)}+\frac{x-M^{l}}{\zeta(k)}+O_{k, l}\left(M^{1+\frac{l-1}{k}}\right) \tag{2}\\
& = \\
& \frac{x}{\zeta(k)}+O_{k, l}\left(M^{1+\frac{l-1}{k}}\right),
\end{align*}
$$

On the other hand, from (1) we have the estimates

$$
\begin{equation*}
0 \leq x-M^{l}<(M+1)^{l}-M^{l} \ll x^{\frac{l-1}{l}} \tag{3}
\end{equation*}
$$

Now combining (2) and (3), we have

$$
\sum_{\substack{n \leq x \\ n \in A_{k, l}}} 1=\frac{x}{\zeta(k)}+O_{k, l}\left(x^{\frac{1}{l}+\frac{1}{k}-\frac{1}{k l}}\right) .
$$

This completes the proof of Theorem 1. From the same argue as proving Theorem 1 and Lemma 2, we can get

$$
\begin{gather*}
\sum_{\substack{n \leq x \\
n \in A_{2,2}}} 1==\frac{12}{\pi^{2}} \sum_{t=1}^{M-1} t+O\left(\sum_{t=1}^{M-1} t^{\frac{7}{22}}+\epsilon\right) \tag{4}\\
=\frac{6}{\pi^{2}} M^{2}+O\left(M^{\frac{29}{22}+\epsilon}\right) \tag{5}\\
=\frac{6}{\pi^{2}} x+O_{k, l}\left(x^{\frac{29}{44}+\epsilon}\right) . \tag{6}
\end{gather*}
$$

This completes the proof of Theorem 2.

References

[1] F.Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publ. House, 1993, pp. 27.
[2] Zhang Tianping, On the k-Power Free Number Sequence, Smarandache Notions Journal, 14 (2004), 62-65.
[3] Zhu Weiyi, On the k-Power Complement and k-Power free Number Sequence, Smarandache Notions Journal, 14 (2004), 66-69.
[4] R.C.Baker and J.Pintz, The distribution of square free numbers, Acta Arith, 46 (1985), 71-79.

