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Abstract Let Fk denotes the set of k-free number. For any positive integers l ≥ 2, we
define a number set Ak,l as follows

Ak,l = {n : n = ml + r, ml ≤ n < (m + 1)l, r ∈ Fk, n ∈ N}.
In this paper, we study the arithmetical properties of the number set Ak,l, and
give some interesting asymptotic formulae for it.
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§1. Introduction
Let k ≥ 2 be an integer. The k-free numbers set Fk is defined as follows

Fk = {n : if prime p|n then pk†n, n ∈ N}.
In problem 31 of [1], Professor F.Smarandache asked us to study the arithmeti-
cal properties of the numbers in Fk. About this problem, many authors had
studied it, see [2], [3], [4]. For any positive integer n and l ≥ 2, there exist an
integer m such that

ml ≤ n ≤ (m + 1)l.

So we can define the following number set Ak,l:

Ak,l = {n : n = ml + r,ml ≤ n < (m + 1)l, r ∈ Fk, n ∈ N}.
In this paper, we use the elementary methods to study the asymptotic properties
of the number of integers in Ak,l less than or equal to a fixed real number x,
and give some interesting asymptotic formulae. That is, we shall prove the
following results:

Theorem 1. Let k, l ≥ 2 be any integers. Then for any real number x > 1,
we have the asymptotic formula

∑

n≤x
n∈Ak,l

1 =
x

ζ(k)
+ Ok,l

(
x

1
l
+ 1

k
− 1

kl

)
,
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where ζ(s) denotes the Riemann zeta function and Ok,l means the big Oh
constant related to k, l.

Theorem 2. Assuming the Riemann Hypothesis, there holds
∑

n≤x
n∈A2,2

1 =
6
π2

x + O
(
x

29
44

+ε
)

,

where ε is any fixed positive number.

§2. Two Lemmas
Lemma 1. For any real number x > 1 and integer k ≥ 2, we have the

asymptotic formula ∑

n≤x
n∈Fk

1 =
x

ζ(k)
+ O

(
x

1
k

)
.

Proof. See reference [5].
Lemma 2. Assuming the Riemann Hypothesis, we have

∑

n≤x
n∈F2

1 =
6
π2

x + O
(
x

7
22 + ε

)
.

Proof. See reference [6].

§3. Proof of the theorems
In this section, we shall complete the proofs of the theorems. For any real

number x ≥ 1 and integer l ≥ 2, there exist a positive integer M such that

M l ≤ x < (M + 1)l. (1)

So from the definition of the number set Ak,l and Lemma 1, we can write

∑

n≤x
n∈Ak,l

1 =
M−1∑

t=1

(t+1)l−tl∑

m=1
m∈Fk

1
∑

m≤x−M l

m∈Fk

1

=
M−1∑

t=1

(t + 1)l − tl

ζ(k)
+ O

(
M−1∑

t=1

(
(t + 1)l − tl

) 1
k

)

+
x−M l

ζ(k)
+ O

((
x−M l

) 1
k

)

=
M−1∑

t=1

(t + 1)l − tl

ζ(k)
+

x−M l

ζ(k)
+ Ok,l

(
M1+ l−1

k

)

=
x

ζ(k)
+ Ok,l

(
M1+ l−1

k

)
, (2)
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On the other hand, from (1) we have the estimates

0 ≤ x−M l < (M + 1)l −M l ¿ x
l−1

l (3)

Now combining (2) and (3), we have
∑

n≤x
n∈Ak,l

1 =
x

ζ(k)
+ Ok,l

(
x

1
l
+ 1

k
− 1

kl

)
.

This completes the proof of Theorem 1. From the same argue as proving The-
orem 1 and Lemma 2, we can get

∑

n≤x
n∈A2,2

1 = = 12
π2

∑M−1
t=1 t + O

(∑M−1
t=1 t

7
22

+ε
)

(4)

= 6
π2 M2 + O

(
M

29
22

+ε
)

(5)

= 6
π2 x + Ok,l

(
x

29
44

+ε
)

. (6)

This completes the proof of Theorem 2.
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