A NUMBER THEORETIC FUNCTION AND ITS MEAN VALUE *

Ren Ganglian
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China
rg170718@sina.com

Abstract

Let $q \geq 3$ be a fixed positive integer, $e_{q}(n)$ denotes the largest exponent of power q which divides n. In this paper, we use the elementary method to study the properties of the sequence $e_{q}(n)$, and give some sharper asymptotic formulas for the mean value $\sum_{n \leq x} e_{q}^{k}(n)$.

Keywords: Largest exponent; Asymptotic formula; Mean value.

$\S 1$. Introduction

Let $q \geq 3$ be a fixed positive integer, $e_{q}(n)$ denotes the largest exponent of power q which divides n. It is obvious that $e_{q}(n)=m$, if $q^{m} \mid n$, and $q^{m+1} \dagger n$. In problem 68 of [3], Professor F.Smarandach asked us to study the properties of the sequence $e_{q}(n)$. About this problem, lv chuan in [2] had given the following result:
If p is a prime, $m \geq 0$ is an integer

$$
\sum_{n \leq x} e_{p}^{m}(n)=\frac{p-1}{p} a_{p}(m) x+O\left(\log ^{m+1} x\right),
$$

where $a_{p}(m)$ is a computable number.
The author had used the analytic method to consider the special case: p_{1} and p_{2} are two fixed distinct primes. That is, for any real number $x \geq 1$, we have the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} e_{p_{1} p_{2}}(n)=\frac{x}{p_{1} p_{2}-1}+O\left(x^{1 / 2+\varepsilon}\right), \tag{1}
\end{equation*}
$$

where ε is any fixed positive number.
In this paper, we use the elementary method to improve the error term of (1), and give some sharper asymptotic formula for the mean value $\sum_{n \leq x} e_{q}^{k}(n)$. That is we shall prove the following:

Theorem 1. Let $q \geq 3$ be any fixed positive integer, then for any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} e_{q}(n)=\frac{x}{q-1}+O(\log x) .
$$

Theorem 2. If $q \geq 3$ is any fixed positive integer, $k \geq 2$ is an integer, then we have the asymptotic formula

$$
\sum_{n \leq x} e_{q}^{k}(n)=\frac{q-1}{q} B_{q}(k) x+O\left(\log ^{k+1} x\right)
$$

where $B_{q}(k)$ is given by the recursion formulas: $B_{q}(0)=\frac{1}{q-1}$,
$\left.B_{q}(k)=\frac{1}{q-1}\binom{k}{1} B_{q}(k-1)+\binom{k}{2} B_{q}(k-2)+\cdots+\binom{k}{k-1} B_{q}(1)+B_{q}(0)+1\right)$.
Taking $q=p_{1} p_{2}$ in Theorem 1, where p_{1}, p_{2} are two fixed distinct primes, we may immediately obtain the following

Corollary. For any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} e_{p_{1} p_{2}}(n)=\frac{x}{p_{1} p_{2}-1}+O(\log x) .
$$

§2. Proof of the theorems

In this section, we shall complete the Theorems.
Let $M=[x]$, the greatest integer $\leq x, S$ denotes the set of $\{1,2,3, \cdots, M\}$. We distribute the integers of S into disjoint sets as follows. For each integer $m \geq 0$, let

$$
A(m)=\left\{n \mid \quad e_{q}(n)=m, 1 \leq n \leq M\right\} .
$$

That is, $A(m)$ contains those elements of S which satisfies: $q^{m} \mid n$, but $q^{m+1} \dagger n$.

Therefore if $f(m)$ denotes the number of integers in $A(m)$, we have

$$
f(m)=\left[\frac{M}{q^{m}}\right]-\left[\frac{M}{q^{m+1}}\right]
$$

So we have

$$
\begin{aligned}
& \sum_{n \leq x} e_{q}(n)=\sum_{n \leq M} e_{q}(n)=\sum_{m=0}^{\infty} m f(m) \\
= & \sum_{m=1}^{\infty} m\left(\left[\frac{M}{q^{m}}\right]-\left[\frac{M}{q^{m+1}}\right]\right)=\sum_{m=1}^{\infty}\left[\frac{M}{q^{m}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=1}^{\infty} \frac{M}{q^{m}}+O\left(\sum_{m \leq \frac{\log M}{\log q}} 1\right)+O\left(\sum_{m>\frac{\log M}{\log q}} \frac{M}{q^{m}}\right) \\
& =\sum_{m=1}^{\infty} \frac{x}{q^{m}}+O\left(\sum_{m=1}^{\infty} \frac{1}{q^{m}}\right)+O\left(\frac{\log M}{\log q}\right) \\
& =\frac{x}{q-1}+O(\log x) .
\end{aligned}
$$

This completes the proof of Theorem1.
Before proving Theorem 2, we consider the series $B_{q}(k)=\sum_{m=1}^{\infty} \frac{m^{k}}{q^{m}}$, it is easy to show that

$$
\begin{gathered}
B_{q}(0)=\sum_{m=1}^{\infty} \frac{1}{q^{m}}=\frac{1}{q-1}, \text { and } B_{q}(k) \text { satisfies the recursion formula } \\
B_{q}(k)=\frac{1}{q-1}\left(\binom{k}{1} B_{q}(k-1)+\binom{k}{2} B_{q}(k-2)+\cdots+\binom{k}{k-1} B_{q}(1)+B_{q}(0)+1\right) .
\end{gathered}
$$

Now we complete the proof of theorem2, with the same method as above, we have

$$
\begin{aligned}
& \sum_{n \leq x} e_{q}^{k}(n)=\sum_{n \leq M} e_{q}^{k}(n)=\sum_{m=0}^{\infty} m^{k} f(m) \\
= & \sum_{m=1}^{\infty} m^{k}\left(\left[\frac{M}{q^{m}}\right]-\left[\frac{M}{q^{m+1}}\right]\right) \\
= & \sum_{m=1}^{\infty} m^{k}\left(\frac{M}{q^{m}}-\frac{M}{q^{m+1}}\right)+O\left(\sum_{m \leq \frac{\log M}{\log q}} m^{k}\right)+O\left(\sum_{m>\frac{\log M}{\log q}} \frac{M m^{k}}{q^{m}}\right) \\
= & \frac{(q-1) M}{q} \sum_{m=1}^{\infty} \frac{m^{k}}{q^{m}}+O\left(\log ^{k+1} M\right)+O\left(\frac{1}{q^{\left.\frac{\log M}{\log q}\right]}} \sum_{u=1}^{\infty} \frac{M\left(\frac{\log M}{\log q}+u\right)^{k}}{q^{u}}\right) \\
= & \frac{(q-1) M}{q} B_{q}(k)+O\left(\log ^{k+1} M\right) \\
& +O\left(\left(\frac{\log M}{\log q}\right)^{k} \sum_{u=1}^{\infty} \frac{1}{q^{u}}+\binom{k}{1}\left(\frac{\log M}{\log q}\right)^{k-1} \sum_{u=1}^{\infty} \frac{u}{q^{u}}+\cdots+\binom{k}{k} \sum_{u=1}^{\infty} \frac{u^{k}}{q^{u}}\right) \\
= & \frac{(q-1) M}{q} B_{q}(k)+O\left(\log ^{k+1} M\right) \\
= & \frac{q-1}{q} B_{q}(k) x+O\left(\log ^{k+1} x\right) .
\end{aligned}
$$

This completes the proof of Theorem2.

References

[1] Tom M.Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[2]Zhang Wenpeng, Research on Smarandache problems in number theory, Hexis, 2004.
[3F.Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publ. House, 1993.
[4] Pan Chengdong and Pan Chengbiao, Foundation of Analytic Number Theory, Beijing, Science Press, 1997.

