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Abstract The odd sieve sequence is the sequence, which is composed of all odd numbers
that are not equal to the difference of two primes. In this paper, we use ana-
lytic method to study the mean value properties of this sequence, and give two
interesting asymptotic formulae.
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S1.Introduction
The odd sieve sequence is the sequence, which is composed of all odd

numbers that are not equal to the difference of two primes. For example:
7, 11, 19, 23, 25, · · ·. In problem 94 of [1], Professor F.Smarandache asked
us to study this sequence. About this problem, it seems that none had studied
it before. LetA denotes the set of the odd sieve numbers. In this paper, we use
analytic method to study the mean value properties of this sequence, and give
two interesting asymptotic formulae. That is, we shall prove the following:

Theorem 1. For any positive number x > 1, we have the asymptotic
formula

∑
n≤x
n∈A

n =
x2

4
− x2

2 ln x
+ O

(
x2

ln2 x

)
.

Theorem 2. For any positive number x > 1, we have the asymptotic
formula

∑
n≤x
n∈A

1
n

=
1
2

ln
x

2
− ln ln(x + 2) +

1
2
γ −A + B + O

(
1

lnx

)
,

where A, B are computable constants, γ is the Euler’s constant.

§2. Proof of Theorems
In this section, we shall complete the proof of Theorems. Firstly we prove

Theorem 1, let

a(n) =
{

1, n is a prime,
0, otherwise,
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and note that
π(x) =

∑

n≤x

a(n) =
x

lnx
+ O

(
x

ln2 x

)
.

Therefore if we take f(n) = n in Abel’s identity, we can get the estimate

∑

p≤x+2

p = (x + 2)π(x + 2)− 2π(2)−
∫ x+2

2
π(t)f

′
(t)dt

=
(x + 2)2

ln(x + 2)
+ O

(
(x + 2)2

ln2(x + 2)

)
−

∫ x+2

2

(
t

ln t
+ O

(
t

ln2 t

))
dt

=
(x + 2)2

2 ln(x + 2)
+ O

(
(x + 2)2

ln2(x + 2)

)
.

Then from the definition of the odd sieve sequence and the Euler’s summation
formula, we have

∑
n≤x
n∈A

n =
∑

2n−1≤x

(2n− 1)−
∑

p−2≤x

(p− 2)

=
(x + 1)(x + 3)

4
+ O(x)−

∑

p≤x+2

p + 2
∑

p≤x+2

1

=
(x + 1)(x + 3)

4
− (x + 2)2

2 ln(x + 2)
+ O

(
(x + 2)2

ln2(x + 2)

)

=
x2

4
− x2

2 ln x
+ O

(
x2

ln2 x

)
.

This completes the proof of Theorem 1.
Now we prove Theorem 2. From the Euler’s summation formula, we have

∑

n≤x

1
n

= ln x + γ + O

(
1
x

)
, (1)

where γ is the Euler’s constant.
Since

∑

n≤x

1
2n(2n− 1)

≤
∞∑

n=1

1
(n− 1)2

,

we have
∑

n≤x

1
2n(2n− 1)

= O(1). (2)

Note
∑

n≤x

1
p

= ln lnx + A + O

(
1

lnx

)
, (3)
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where A is a constant.
From the definition of odd sieve and formulae (1), (2) and (3), we can obtain

∑
n≤x
n∈A

1
n

=
∑

2n−1≤x

1
2n− 1

−
∑

p−2≤x

1
p

=
∑

n≤x+1
2

(
1
2n

+
1

2n(2n− 1)

)
−

∑

3≤p≤x+2

1
p− 2

=
1
2

∑

n≤x+1
2

1
n
−

∑

p≤x+2

1
p

+
∑

n≤x+1
2

1
2n(2n− 1)

−
∑

3≤p≤x+2

2
p(p− 2)

+
1
2

=
1
2

ln
x

2
− ln ln(x + 2) +

1
2
γ −A + B + O

(
1

lnx

)
,

where B is a computable constant.
This completes the proof of Theorem 2.
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