ON 15-TH SMARANDACHE'S PROBLEM
Mladen V. Vassilev - Missana
5. V. Hugo Str., Sofia-1124, Bulgaria, e-mail: missana@abv.bg

Introduction

The 15-th Smarandache's problem [10,11] is the following: "Smarandache's simple numbers:
2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, ...
A number \(n \) is called "Smarandache's simple number" if the product of its proper divisors is less than or equal to \(n \). Generally speaking, \(n \) has the form \(n = p \), or \(n = p^2 \), or \(n = p^3 \), or \(n = pq \), where \(p \) and \(q \) are distinct primes".

Let us denote: by \(S \) - the sequence of all Smarandache's simple numbers and by \(s_n \) - the \(n \)-th term of \(S \); by \(P \) - the sequence of all primes and by \(p_n \) - the \(n \)-th term of \(P \); by \(P^2 \) - the sequence \(\{ p_n^2 \}_{n=1}^{\infty} \); by \(P^3 \) - the sequence \(\{ p_n^3 \}_{n=1}^{\infty} \); by \(PQ \) - the sequence \(\{ p_nq \}_{p,q \in P} \), where \(p < q \).

For an arbitrary increasing sequence of natural numbers \(C = \{ c_n \}_{n=1}^{\infty} \) we denote by \(\pi_C(n) \) the number of terms of \(C \), which are not greater than \(n \). When \(n < c_1 \) we must put \(\pi_C(n) = 0 \).

In the present paper we find \(\pi_S(n) \) in an explicit form and using this, we find the \(n \)-th term of \(S \) in explicit form, too.

1. \(\pi_S(n) \)-representation

First, we must note that instead of \(\pi_P(n) \) we shall use the well known denotation \(\pi(n) \). Hence

\[\pi_P(n) = \pi(\sqrt{n}) \quad \pi_P(n) = \pi(\sqrt{n}). \]

Thus, using the definition of \(S \), we get

\[\pi_S(n) = \pi(n) + \pi(\sqrt{n}) + \pi(\sqrt{n}) + \pi_PQ(n). \]

(1)

Our first aim is to express \(\pi_S(n) \) in an explicit form. For \(\pi(n) \) some explicit formulae are proposed in [2]. Other explicit formulae for \(\pi(n) \) are contained in [3]. One of them is known as Mináč's formula. It is given below

\[\pi(n) = \sum_{k=2}^{n} \left[\frac{(k-1)! + 1}{k} \right] - \left[\frac{(k-1)!}{k} \right]. \]

(2)

where \([\cdot]\) denotes the function integer part. Therefore, the question about explicit formulae for functions \(\pi(n), \pi(\sqrt{n}), \pi(\sqrt{n}) \) is solved successfully. It remains only to express \(\pi_PQ(n) \) in an explicit form.

Let \(k \in \{ 1, 2, ..., \pi(\sqrt{n}) \} \) be fixed. We consider all numbers of the kind \(p_kq \), where \(q \in \mathbb{P}, q > p_k \) for which \(p_kq \leq n \). The number of these numbers is \(\pi(\frac{n}{p_k}) - \pi(p_k) \), or which is the same

\[\pi(\frac{n}{p_k}) - k. \]

(3)

When \(k = 1, 2, ..., \pi(\sqrt{n}) \), numbers \(p_kq \), that were defined above, describe all numbers of the kind \(p_kq \), where \(p, q \in \mathbb{P}, p < q, p,q \leq n \). But the number of the last numbers is equal to \(\pi_PQ(n) \). Hence

\[\pi_PQ(n) = \sum_{k=1}^{\pi(\sqrt{n})} \left(\pi(\frac{n}{p_k}) - k \right), \]

(4)

because of (3). The equality (4), after a simple computation yields the formula

\[\pi_PQ(n) = \sum_{k=1}^{\pi(\sqrt{n})} \pi(\sqrt{n}) - \pi(\sqrt{n})(\pi(\sqrt{n}) + 1). \]

(5)

In [4] the identity

\[\sum_{k=1}^{\pi(\sqrt{n})} \pi(\frac{n}{p_k}) = \pi(\frac{n}{b}) \pi(b) + \sum_{k=1}^{\pi(\sqrt{n})} \pi(\frac{n}{p_k}) \]

(6)

is proved, under the condition \(b \geq 2 \) (\(b \) is a real number). When \(\pi(\frac{b}{2}) = \pi(\frac{b}{2}) \), the right hand-side of (6) reduces to \(\pi(\frac{b}{2}) \pi(b) \). In the case \(b = \sqrt{n} \) and \(n \geq 4 \) equality (6) yields

\[\sum_{k=1}^{\pi(\sqrt{n})} \pi(\frac{n}{p_k}) = \pi(\sqrt{n})^{\pi(\sqrt{n})} + \sum_{k=1}^{\pi(\sqrt{n})} \pi(\frac{n}{p_k}) \]

(7)

If we compare (5) with (7) we obtain for \(n \geq 4 \)

\[\pi_PQ(n) = \pi(\sqrt{n})(\pi(\sqrt{n}) - 1) + \sum_{k=1}^{\pi(\sqrt{n})} \pi(\frac{n}{p_k}) \]

(8)

Thus, we have two different explicit representations for \(\pi_PQ(n) \). These are formulae (5) and (8). We must note that the right hand-side of (8) reduces to \(\pi(\sqrt{n})(\pi(\sqrt{n}) - 1) \), when \(\pi(\frac{b}{2}) = \pi(\sqrt{n}) \).

Finally, we observe that (1) gives an explicit representation for \(\pi_S(n) \), since we may use formula (2) for \(\pi(n) \) (or other explicit formulae for \(\pi(n) \)) and (5), or (8) for \(\pi_PQ(n) \).
2. Explicit formulae for s_n

The following assertion decides the question about explicit representation of s_n.

Theorem: The n-th term s_n of S admits the following three different explicit representations:

$$s_n = \sum_{k=0}^{\pi(n)} \frac{1}{1 + \left\lfloor \frac{\pi(n)}{n} \right\rfloor}; \quad (9)$$

$$s_n = -2 \sum_{k=0}^{\pi(n)} \theta(-2\left\lfloor \frac{\pi(n)}{n} \right\rfloor); \quad (10)$$

$$s_n = \sum_{k=0}^{\pi(n)} \frac{1}{\Gamma(1 - \left\lfloor \frac{\pi(n)}{n} \right\rfloor)}; \quad (11)$$

where

$$\theta(n) = \left\lfloor \frac{n^2 + 3n + 4}{4} \right\rfloor, \quad n = 1, 2, \ldots, \quad (12)$$

ζ is the Riemann function zeta and Γ is Euler's function gamma.

Remark. We must note that in (9)-(11) $\pi_S(k)$ is given by (1), $\pi(k)$ is given by (2) (or by others formulae like (2)) and $\pi_{CQ}(n)$ is given by (5), or by (8). Therefore, formulae (9)-(11) are explicit.

Proof of the Theorem. In [2] the following three universal formulae are proposed, using $\pi_{C\{k\}}(k = 0, 1, \ldots)$, which one could apply to represent c_n. They are the following

$$c_n = \sum_{k=0}^{\infty} \frac{1}{1 + \left\lfloor \pi_{C\{k\}} \right\rfloor}; \quad (13)$$

$$c_n = -2 \sum_{k=0}^{\infty} \zeta(-2\left\lfloor \frac{\pi_{C\{k\}}}{n} \right\rfloor); \quad (14)$$

$$c_n = \sum_{k=0}^{\infty} \frac{1}{\Gamma(1 - \left\lfloor \frac{\pi_{C\{k\}}}{n} \right\rfloor)}; \quad (15)$$

In [5] is shown that the inequality

$$p_n \leq \theta(n), \quad n = 1, 2, \ldots, \quad (16)$$

holds. Hence

$$s_n = \theta(n), \quad n = 1, 2, \ldots, \quad (17)$$

since we have obviously

$$s_n \leq p_n, \quad n = 1, 2, \ldots. \quad (18)$$

Then to prove the Theorem it remains only to apply (13)-(15) in the case $C = S$, i.e., for $c_n = s_n$, putting there $\pi_S(k)$ instead of $\pi_{C\{k\}}$ and $\theta(n)$ instead of ∞.

REFERENCES:

