On Additive Analogues of Certain Arithmetic
 Functions

József Sándor
Department of Mathematics,
Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1. The Smarandache, Pseudo-Smarandache, resp. Smarandache-simple functions are defined as ([7], [6])

$$
\begin{gather*}
S(n)=\min \{m \in \mathbb{N}: n \mid m!\} \tag{1}\\
Z(n)=\min \left\{m \in \mathbb{N}: n \left\lvert\, \frac{m(m+1)}{2}\right.\right\}, \tag{2}
\end{gather*}
$$

$$
S_{p}(n)=\min \left\{m \in \mathbb{N}: p^{n} \mid m!\right\} \text { for fixed primes } p
$$

and Z have been studied e.g. in [2], [5], [6]:

$$
\begin{gather*}
S .(n)=\max \{m \in \mathbb{N}: m!\mid n\} \tag{4}\\
Z_{*}(n)=\max \left\{m \in \mathbb{N}: \left.\frac{m(m+1)}{2} \right\rvert\, n\right\} . \tag{5}
\end{gather*}
$$

We note here that the dual of the Smarandache simple function can be defined in a similar manner, namely by

$$
\begin{equation*}
S_{p^{*}}(n)=\max \left\{m \in \mathbb{N}: m!\mid p^{n}\right\} \tag{6}
\end{equation*}
$$

This dual will be studied in a separate paper (in preparation).
2. The additive analogues of the functions S and S, are real variable functions, and have been defined and studied in paper [3]. (Sce also our book [6], pp. 171-174). These functions have been recently further extended, by the use of Euler's gamma function, in place of the factorial (see [1]). We note that in what follows, we could define also the additive analogues functions by the use of Euler's gamma function. However, we shall apply the more transparent notation of a factorial of a positive integer.

The additive analogues of S and S. from (1) and (4) have been introduced in [3] as follows:

$$
S(x)=\min \{m \in \mathbb{N}: x \leq m!\}, \quad S:(1, \infty) \rightarrow \mathbb{R}
$$

resp.

$$
\begin{equation*}
S_{\bullet}(x)=\max \{m \in \mathbb{N}: m!\leq x\}, \quad S_{*}:[1, \infty) \rightarrow \mathbb{R} \tag{8}
\end{equation*}
$$

Besides of properties relating to continuity, differentiability, or Riemanri integrability of these functions, we have proved the following results:

Theorem 1.

$$
\begin{equation*}
S_{.}(x) \sim \frac{\log x}{\log \log x} \quad(x \rightarrow \infty) \tag{9}
\end{equation*}
$$

(the same for $S(x)$).
Theorem 2. The series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n(S .(n))^{\alpha}} \tag{10}
\end{equation*}
$$

is convergent for $\alpha>1$ and divergent for $\alpha \leq 1$ (the same for S.(n) replaced by $S(n)$).
3. The additive analogues of Z and Z. from (2), resp. (4) will be defined as

$$
\begin{align*}
& Z(x)=\min \left\{m \in \mathbb{N}: x \leq \frac{m(m+1)}{2}\right\}, \tag{11}\\
& Z .(x)=\max \left\{m \in \mathbb{N}: \frac{m(m+1)}{2} \leq x\right\} \tag{12}
\end{align*}
$$

In (11) we will assume $x \in(0,+\infty)$, while in (12) $x \in[1,+\infty)$.
The two additive variants of $S_{p}(n)$ of (3) will be defined as

$$
\begin{equation*}
P(x)=S_{p}(x)=\min \left\{m \in \mathbb{N}: p^{x} \leq m!\right\} \tag{13}
\end{equation*}
$$

(where in this case $p>1$ is an arbitrary fixed real number)

$$
\begin{equation*}
P_{.}(x)=S_{p}(x)=\max \left\{m \in \mathbb{N}: m!\leq p^{x}\right\} \tag{14}
\end{equation*}
$$

From the definitions follow at once that

$$
\begin{align*}
& Z(x)=k \Leftrightarrow x \in\left(\frac{(k-1) k}{2}, \frac{k(k+1)}{2}\right] \text { for } k \geq 1 \tag{15}\\
& Z .(x)=k \Leftrightarrow x \in\left[\frac{k(k+1)}{2}, \frac{(k+1)(k+2)}{2}\right) \tag{16}
\end{align*}
$$

For $x \geq 1$ it is immediate that

$$
\begin{equation*}
Z \cdot(x)+1 \geq Z(x) \geq Z \cdot(x) \tag{17}
\end{equation*}
$$

Therefore, it is sufficient to study the function $Z_{\text {. }}(x)$.
The following theorems are easy consequences of the given definitions:
Theorem 3.

$$
\begin{equation*}
Z .(x) \sim \frac{1}{2} \sqrt{8 x+1} \quad(x \rightarrow \infty) \tag{18}
\end{equation*}
$$

Theorem 4.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{(Z \cdot(n))^{\alpha}} \text { is convergent for } \alpha>2 \tag{19}
\end{equation*}
$$

and divergent for $\alpha \leq 2$. The series $\sum_{n=1}^{\infty} \frac{1}{n\left(Z_{*}(n)\right)^{\alpha}}$ is convergent for all $\alpha>0$.

Proof. By (16) one can write $\frac{k(k+1)}{2} \leq x<\frac{(k+1)(k+2)}{2}$, so $k^{2}+k-2 x \leq 0$ and $k^{2}+3 k+2-2 x>0$. Since the solutions of these quadratic equations are $k_{1,2}=$ $\frac{-1 \pm \sqrt{8 x+1}}{2}$, resp. $k_{3.4}=\frac{-3 \pm \sqrt{8 x+1}}{2}$, and remarking that $\frac{\sqrt{8 x+1}-3}{2} \geq 1 \Leftrightarrow$

$$
\begin{cases}k \in\left[1, \frac{\sqrt{1+8 x}-1}{2}\right] & \text { if } x \in[1,3) ; \tag{20}\\ k \in\left(\frac{\sqrt{1+8 x}-3}{2}, \frac{\sqrt{1+8 x}-1}{2}\right] & \text { if } x \in[3,+\infty)\end{cases}
$$

So, for $x \geq 3$

$$
\begin{equation*}
\frac{\sqrt{1+8 x}-3}{2}<Z .(x) \leq \frac{\sqrt{1+8 x}-1}{2} \tag{21}
\end{equation*}
$$

implying relation (18).
Theorem 4 now follows by (18) and the known fact that the generalized harmonic series $\sum_{n=1}^{\infty} \frac{1}{n^{j}}$ is convergent only for $\theta>1$.

The things are slightly more complicated in the case of functions P and P.. Here it is sulficient to consider $P_{.}$, too.

First remark that

$$
\begin{equation*}
P_{*}(x)=m \Leftrightarrow x \in\left[\frac{\log m!}{\log p}, \frac{\log (m+1)!}{\log p}\right) \tag{22}
\end{equation*}
$$

The following assmptotic results have been proved in [3] (Lemma 2) (see also [6], p. 1i2)

$$
\begin{equation*}
\log m!\sim m \log m, \quad \frac{m \log \log m!}{\log m!} \sim 1, \quad \frac{\log \log m!}{\log \log (m+1)!} \sim 1 \quad(m \rightarrow \infty) \tag{23}
\end{equation*}
$$

By (22) one can write
$\frac{m \log \log m!}{\log m!}-\frac{m}{\log m!} \log \log p \leq \frac{m \log x}{\log m!} \leq \frac{m \log \log (m+1)!}{\log m!}-(\log \log p) \frac{m}{\log m!}$, giving $\frac{m \log x}{\log m!} \rightarrow 1(m \rightarrow \infty)$, and by (23) one gets $\log x \sim \log m$. This means that:
Theorem 5 .

$$
\begin{equation*}
\log P_{\cdot}(x) \sim \log x \quad(x \rightarrow \infty) \tag{24}
\end{equation*}
$$

The following theorem is a consequence of (24), and a convergence theorem established in [3]:

Theorem 6. The series $\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{\log \log n}{\log P_{*}(n)}\right)^{\alpha}$ is convergent for $\alpha>1$ and divergent for $\alpha \leq 1$.

Indeed, by (24) it is sufficient to study the series $\sum_{n \geq n_{n}}^{\infty} \frac{1}{n}\left(\frac{\log \log n}{\log n}\right)^{a}$ (where $n_{0} \in \mathbb{N}$ is a fixed positive integer). This series has been proved to be convergent for $\alpha>1$ and divergent for $\alpha \leq 1$ (see $[6]$, p. 174).

References

[1] C. Adiga and Taekyun Kim, On a generalization of Sándor's function, Proc. Jangjeon Math. Soc. 5(2002), no. 2, 121-124.
[2] J. Sándor, On certain generalizations of the Smarandache function, Notes Number Th. Discr. Math. 5(1999), no. 2, 41-51.
[3] J. Sándor, On an additive analogue of the function S, Notes Number Th. Discr. Math. 7 (2001), no. 3.
[4] J. Sándor, On the pseudo-Smarandache function, Smarandache Notions J. 12(2001), no. 1-2-3, 59-62.
[5] J. Sándor, On a dual of the pseudo-Smarundache function, Smarandache Notions J. 13(2002), no. 1-2-3, 18-23.
[6] J. Sándor, Geometric theorems, diophantine equations and arithmetic functions, American Research Press, Rehoboth, NM, 2002 (see pp. 141-149, 156-158, 161-166, 171-174) [MR 1906446 (Review); Zbl. 1004.11001; Zbl. Math. Di 2002e.03960]
[7] F. Smarandache, A function in the Number theory, An. Univ. Timişoara, Ser. Şt. Mat. 28(1980), no. 1, 79-88.

