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1. The Smarandache, Pseudo-Smarandache, resp. Smarandache-simple functions are
defined as ([7], [6])

S(n) = mi.n{m € N: njm!}, (n
Z(n) = min {m,e N: n|ml§j‘—1-)-} , (2)
Sp(n) = min{m € N: p"|m!} for fixed primes p. (3)
The duals of § and Z have been studied e.g. in (2], [5], [6]:
S.(n) = max{m € N: ml|n}, (4)
Z.(n) = max {m eN: M[n} . (5)

We note here that the dual of the Smarandache simple function can be defined in a
similar manner, namely by

Spe(n) = max{m e N: m!jp"} (6)

This dual will be studied in a separate paper (in preparation).

- 2. The additive analogues of the functions S and S, are real variable functions, and
have been defined and studied in paper [3]. (See also our book [6], pp. 171-174). These
functions have been recently further extended, by the use of Euler’'s gamma function, in
place of the factorial (see [1]). We note that in what follows, we could define also the
additive analogues functions by the use of Euler’s gamma function. However, we shall
apply the more transparent notation of a factorial of a positive integer.

The additive analogues of § and S, from (1) and (4) have been introduced in. (3] as

follows:
S(r) =min{meN: r<m!}, S:(1,00) 3R, (7)

resp.

S.(¢r) =max{meN: m! <z}, S.:[l,c0) >R (8)
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Besides of properties relating to continuity, differentiability, or Riemanii integrability

of these functions, we have proved the following results:
Theorem 1.

logx ]
S.(z) ~ Ioglog 2 (z — 00) 9)
(the same for S(z)).
Theorem 2. The series -
1
2 (1)

n=1

is convergent for a > 1 and divergent for a <1 (the same for S.(n) replaced by S(n)).
3. The additive analogues of Z and Z, from (2), resp. (4) will be defined as

Z(.E):lllill{lnEN: 55"—1(%4.—9}. ) (1)
Z.(z) = max {m €N: ﬂ('%Ll) < I} (12)

In (11) we will assume z € (0, +00), while in (12) z € [1, +00).
The two additive variants of Sp(n) of (3) will be defined as

P(z) = Sp(x) = min{m € N: p® < m!}; ‘ (13)

(where in this case p > 1 is an arbitrary fixed real number)

P.(z) = Spu(z) = max{m € N: m! <p*} (14)
From the definitions follow at once that
Z(x)=k & z€ ((k'zl)k,'”—'(f;—l)} for k> 1 (15)
Z(1) =k & Ie[k(k;l),(k+1¥k+2)) (16)
For £ > 1 it is immediate that
Z.(z)+13 Z(z) > Z.(x) (17)

Therefore, it is sufficient to study the function Z.(r). .
The following theorems are easy consequences of the given definitions:
Theorem 3.

Z.(z) ~ %\/8;|:+1 (z — 00) (18)
Theorem 4.
1
———— is convergent for a > 2 19
Y ADIR gent f (19)

=)
1 .
and divergent for o < 2. The series E W is convergent for all a > 0.
n=1 *
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Proof. By (16) one can write M <z < w, sok2+k—-2x<0

and k% + 3k + 2 — 2z > 0. Since the solutions of these quadratic equations are k12 =

—1ﬂ:\/8x+1 —-3:!:\/81+1 . \/8.1:+ >1 -

—_— T resp. k34 = , and remarking that ————
z > 3, we obtain that the solution of the above system of inequalities i IS
VIi+8x -1
ke [1——21——] it zell,3);
(20)

ke (\fl+8x—3, \/1+81:-—1] it 5 €3, +00)
2 2
So, forz >3

\/1+28$—3<Z.(I)5\/l+§m_1 (21)

implying relation (18).
Theorem 4 now follows by (18) and the known fact, that the generalized harmonic
o0

1.
series E —; is convergent only for 6 > 1.
n

n=
The thmgs are slightly more complicated in thc case of functions P and P.. Here it is
sufficient to consider P,, too.

First remark that

Pfz)=m & z€ (22)

logm! log(m + 1)!

logp’ logp '
The following asymptotic results have been proved in [3] (Lemma 2) (see also [6], p.

172)

mloglog m! 1 log log m! 1 (m = o) (23)
log m! " loglog(m + 1)!

log m! ~ mlogm,

By (22) one can write

mlog log ! mlogz _ mloglog(m +1)! m
l < - (logl —_—
log m! log oglogp < logm! — log m! (loglog ») log m!
mlog e

giving Tog 1 — 1 (m — 00), and by (23) one gets logz ~ logm. This means that:

Theorem 5.
log P.(x) ~ logz (z — o) (24)
The following theorem is a consequence of (24), and a convergence theorem established
in [3]:

1
Theorem 6. The series Z (l(?gg;?}(;:)) is convergent for @ > 1 and divergent
fora <1.
loglogn
Indeed, by (24) it is sufficient to study the series Z - (-liog—g—) (where ng € N

n>np
is a fixed positive integer). This series has been proved to be convergent for a>1and

divergent for a < 1 (see (6], p. 174).
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