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This work presents the neutrosophic Maxwell distribution (NMD) as a novel probability distribution. The proposed model
represents a generalized design of Maxwell distribution that provides more analytical flexibility for data, including all imprecise
observations or some degree of vagueness within the dataset. Important reliability characteristics and distributional properties of
NMD are developed under the notion of neutrosophy. The neutrosophic forms of some commonly used functions in applied
statistics such as mean, variance, moment generating function, and shape coefficients are explored. In view of uncertainties
involved in the processing data and indeterminacy in the defined parameters, an estimation framework using the maximum
likelihood approach is established. Additionally, the quantile function is developed to validate the distributional properties of
NMD. The efficiency of the neutrosophic estimate has been studied through a Monte Carlo simulation. Finally, real data on the
incubation period of COVID-19 are considered for numerical illustration, and further extensions of the NMD for future research

works are discussed.

1. Introduction

Maxwell [1] derived a mathematical formulation of Maxwell
distribution to illustrate the distribution of particles in
thermal equilibrium. The unimodel and leptokurtic structure
of the Maxwell curve is yielded due to the fact that all
molecules do not travel with identical velocity, and some
move faster than others [2]. A lot of fundamental charac-
teristics of gases are explained by the Maxwell model, which
impacts kinetic energy [3]. The Maxwell distribution is also
known as the model of momenta, velocity, the degree of
momenta, and energy of particles [4]. The Maxwell distri-
bution is well-known for its applications in astronomy,

chemistry, and engineering [5]. The failure rate of the
Maxwell distribution rises steadily over time, which makes it
effective in reliability and in life-testing experiments when the
assumption of fixed failure rates, like that of an exponential
distribution, is impractical [6]. Among many notable con-
tributions that recommended this distribution in real-world
testing investigations are [7-10]. For the first time, the
Maxwell model was treated as a lifetime distribution and
described the Bayesian estimators for the reliability function
and the parameter in the study [11]. Chaturvedi and Rani [12]
extended the Maxwell model by adding more parameters and
provided Bayesian and classical estimators. The empirical
Bayesian estimator using the Maxwell model is investigated
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by [13]. In these works, authors considered that known in-
formation about studied variables and distributional pa-
rameters are completely specified. The earlier studies devoted
a mathematical treatment to the Maxwell model but do not
throw light on neutrosophic aspects of the Maxwell proba-
bility function, especially in applied statistical research.

We encounter continuous variables in everyday life, and
the observations are defined in exact numbers. There are
hundreds of continuous univariate distributions found in
the applied statistical applications [14]. Over the last several
decades, various distributions have been extensively utilized
to model data in a wide range of areas such as environmental
sciences, actuarial and engineering, medical sciences, bio-
logical research, insurance, and economics. However, the
common distributions do not suit well to every data in
various circumstances [15]. On the other hand, measure-
ments of any continuous variables always have some degree
of imprecision [16]. It is self-evident in the scientific realm of
measurements that terms like “equality” and “exact” should
be forbidden since continuous processes cannot be mea-
sured precisely [17]. In addition to continuous variables,
there are circumstances when accurate measurements are
not feasible due to the irregular nature of studied variables
[18-21]. As an illustration, it is impossible to estimate a
river’s depth precisely due to the wave nature of water. A
similar problem arises when attempting to differentiate
between a healthy and an unhealthy individual, a bad and
good student, or between a normal and cool body tem-
perature. This results in the single measurement being
distorted. These considerations lead to the conclusion that
real measurements do contain errors or imprecision in
individual observations, which is referred to as fuzziness
[22]. In a classical statistical framework, modeling variability
among data is usually performed without accounting for
fuzziness. Smarandache [23] proposed neutrosophic logic,
which is an extension of fuzzy logic in order to tackle the
uncertainties in studied variables. Smarandache [24] also
provided the notions of neutrosophic statistics, which are
generalizations of classical statistical procedures. When
indeterminacy is zero, the neutrosophic statistical method
converges to the classical approach. Valuable works that
promoted the idea of neutrosophic statistics and undeter-
mined statistics can be found in [25-27]. Sherwani et al. [28]
recently developed neutrosophic statistics in applied dis-
tributional theory. Based on a review of the literature and to
the best of our knowledge, there is no study on the neu-
trosophic design of the Maxwell model for dealing with data
that may be imprecisely defined.

In what follows, this study presents a statistical frame-
work of the neutrosophic Maxwell distribution with ap-
plications, particularly in applied statistical research.
Neutrosophic measures under the Maxwell model have been
developed for handling imprecise data.

The work done in this study is divided into sections as
follows. In Section 2, the proposed NMD, its genesis, some
distributional properties, related theorems, and reliability
characteristics are given. Section 3 deals with the maximum
likelihood estimation under the neutrosophic environ-
ment. An extensive simulation work to validate the model
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authenticity is conducted in Section 4. In Section 5, the
applicability of NMD has been illustrated by analyzing a
real dataset on COVID-19 incubation period. Last, in
Section 6, a brief discussion about the work done has been
concluded.

2. Neutrosophic Maxwell Distribution

The neutrosophic random variable W is followed by the
NMD model with probability density function (P DFy) as
2
w

2. _ (w222,
Py (w) = \/;AN Swre( /2“)—21(0,00)(“’)5

w>0, 1
. (1)

where Ay € [A,A,], I is an indicator function, W is a
nonnegative variable, and subscripts / and u, respectively,
indicate the lower value and upper value of an indeterminate
parameter. The neutrosophic density function (P DFy)
indicates the chance of events happening between two values
under the sturdy curve. In the framework of neutrosophic
calculus, it is defined as the integral of the variable density
over a specified range. The neutrosophic parameter Ay
denotes simply the scale factor whose different values result
in a variety of neutrosophic curves of the proposed distri-
bution. The graph of P DF) for a continuous random
variable W with different neutrosophic parameters is shown
in Figure 1.

Figure 1 shows that the densities are asymmetric and
skewed toward the right. In the neutrosophic framework,
the density curve is represented by a thick layer rather
than a single curve. The layer thickness (shaded region)
corresponds to an indeterminacy part and total area
under the sturdy curve equal to one due to completeness
of P DF. Several other supporting properties of NMD
may be constructed in the following versions of the
theorems.

Theorem 1. The distribution function

of NMD s
/\T)YI(3/2), (W*/2A3)].

Proof. Distribution function is conventionally defined as
iy (w) = Py (W <w)
- [ (810 9w dw @
_ HO ¢, (w) dw, jo () duw].

Using the transformation x = (w?/2\]) and

y = (w?/2\}) in equation (2) yielded

2 (w?212) ~
/N (w) = [ﬁ J y(lll)e y dy)
(3)
2 (w?217) (/)
ﬁ J pe e_x dx
0

Further simplification of equation (3) resulted
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FiGURe 1: Density plots of the NMD at different values of the neutrosophic parameter. (a) Ay, = (1, 1.5). (b) Ay = (2,2.5). (c) Ay = (3,3.5),

) Ay = (5,6).

() - 29((3/2), (w*/217)) 2¢((3/2), (w*/247))
N = VT ’ VI

(4)

2 [3 w’ ]

NP 2251
where y (.) is the incomplete gamma function. The function
#x (w) has the counter domain (0, 1), and the domain is a
real line with nondecreasing and monotone behavior. Like
P DFy, it is also represented by a thick curve, as shown in

Figure 2.

Figure 2 shows the overall behavior of 7, (w) which is
right continuous and varies in the interval (0, 1). O

Theorem 2. The neutrosophic mean of the NMD is
2AN V2/m.

Proof.

(09

w ¢y (w) dw
0

E(W):J

[ wlgi )¢ dw

0

= ”m w ¢ (w) dw, j:o wé, (w) dw] (5)

0

2 ’2

= |:2/\’l Y 2/114 — ]
Vi T
2

is the required result. O
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FIGURE 2: Neutrosophic distribution function curves of the Maxwell model with different values of Ay. (a) Ay = (1,1.5). (b) Ay = (2,2.5).

Theorem 3. The variance of NMD is (31 — 8) (A3,/m). Proof. 'The ™ moment by definition is given by

Proof. Definition of variance is e = EOW)" = Jo Wy (w) dw
Y (W) = E(W?) = (E(W))?, 6 00
oy (W) = E(W?) = (E(W)) (6) _ I o [, () 6, (w)] duw
where ‘
B - HDO W', (w) dw, ro W', (w) dw]
E(W) =2y p (7) 0 0 (10)
and ) D 3y QD
- [P () ()]
E(Wz) = J w’ ¢y (w) dw
20 . 2(r+2/2)Ar . r+3
=JO w’ ¢ (w), ¢, (w)] dw b==z N ( 2 ) -
_ HOO W, (w) dw, Jm o, wdw| &
0 0 Theorem 5. The  skewness of the NMD s
=[3),31;] (22 (16 - 57)/ (37 - 8)*/),
E(Wz) 32 The skewness coefficient is defined by /B, where
= 3%

Thus, equation (6) becomes.

2 212 2 Bi="% (11)
Now, 0% (w) = [34],3A.] = ([24,V2/m,24,V2/m ])°. u
After simplifying, we get

and
A A2
= Gr-9)7L (3n-9) = - ()’ 1)
3
2 ©) ps = s = 3 +2 ().
=(37-8)-. S .
e O o0, equation (11) becomes
16 - 5m)(2V2 I3 ?
Theorem 4. The r'" moment about the origin of NMD is \/75'1 = [( )( ) N] . (13)

QU N (r +3/2), (G~ §)(A/m))’
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Thus, further simplification of equation (13) yielded

2v/2(16 - 5m)

Theorem 6. The kurtosis of NMD is

, given by
(4(=96 + 407 — 37%)/ (31 — 8)°).

Proof. Definition kurtosis coeficient is given by

= ﬁz - 3) (15)
where
Uy
B == (16)
75
and
2 4
by =ty = Ay + 6 (i) py = 3 (1) (17)

Thus, using equations (9) and (17) in equation (16)
yielded
157 + 167 — 192) (A% /7°
Kurtosis — coefficient = ( )( N ) -3,

[(371 - 8)(Af\,/ﬂ)]2

(18)
or
4(-96 + 407 - 37°)
(3m - 8)*

Kurtosis — coefficient = (19)

In this section, we also considered several to illustrate the
theoretical results of the proposed model. O

Example 1. If the time taken by the service station employee
for wheels alignment is a random variable that follows NMD
with parameter Ay = [5, 8], determine the probability that
the attendant would take more than 15 minutes to balance
four tires.

Solution: . Let W be a random variable that represents the
number of times (in minutes) that a service station employee
takes to balance tires; then, the required probability would be

P(w>15)=1-P(W<15). (20)

Using equation (2), we can write
P(w>15) =1-1y(15). (21)
By using Ay = [5,8], equation (20) can be further
simplified as

P(w>15) =1-[0.681,0.971] =[0.029,0.319]. (22)

Example 2. Research published in the November 1990
edition of Chemical Engineering Progress (CEP) magazine
addressed the percentage purity of neon gas from a specific
supplier. Assume that the percentage purity distribution was

NMD with a mean of [92, 95] percent. What proportion of
the purity values is expected to be between 97 and 99?

Solution: . Let W be a random variable that denotes the
percentage purity of neon gas.

Now, E(W) = [92,95].

Using the result given in Theorem 2, we can find

Ay =[115,119]. (23)

Using Theorem 1, we can write
P(97 <w<99) =1y (99) — 1y (97)

(24)
=1[0.125,0.137] — [0.118,0129].

Hence,

P (97 <w<99) =[0.007,0.008] = [0.07,0.08]%. (25)

Example 3. Certain pollutant concentrations in parts per
billion generated by the chemical plants have typically been
shown to exhibit the neutrosophic Maxwell model with
distribution parameter Ay = [3, 5]. Find the probability that
the concentrations surpass 8 parts per billion?

Solution: . Let the random variable W denotes the con-
centrations in parts per billion; then, the required probability
can be obtained as

Pw>8)=1-P(w<8)

=1-17y5(8) (26)
=1[0.068, 0.464].

3. Neutrosophic Estimation Procedure

In this section, we discuss the analytical procedure for es-
timating the parameter of NMD using the most common
method of maximum likelihood (ML). A new procedure
using neutrosophic statistics for estimating the parameter of
NMD is introduced. Let wyy, Wy, Wsps - -->W,,Ny be the
observed interval values sample from NMD with density
function ¢ (w). Assuming the parameter 1, is unknown in
the defined distribution, then [, ¢, (w;y,Ay) be the joint
probability of the observed sample.

Taking the logarithm of the product [T, ¢n (w;, Ay)
provides log-likelihood as

2
En (wins Ay) = glog<;> - 3nlog Ay

(27)

n n 2
W
+ log wh, - —Z"l iN
iN ZAZ
i=1 N

The ML estimate of the unknown Ay is the value that
maximizes &y (w,Ay), ie.,

Ay = max (Ex (Wi Ay)). (28)

The ML estimates, namely, A5 can be obtained by using
the neutrosophic calculus as



0y (w, Iy) _ [551 (wibll), 08, (Wi 1) (29)

Oy oA, o\, ’
where & (w, ) = (n/2)log(2/m) - 3n log A+ log [T, w3 -
(YL, w?/21]) and

2
Y Wi
212

u

n 2 =
&, (wA,) = Elog(;) —3nlog 9, + logg w,, —
(30)
Simplification of equation (29) provides

6y (w,Ay) _ [_3” + py wizl —3n . Py wizu]

Sy A

Rt (31)

Equating equation (31) to [0, 0] yields

n 2 n 2
[leu] _ [VZ,»;qwﬂ i \JZM Wiy ]) (32)

3n

hence proved.

Following the work of Sultan et al. [29], the effectiveness of
the neutrosophic ML estimate is also evaluated for an unknown
parameter of NMD. A Monte Carlo simulation is run with
varying sample sizes and parameter settings to see how the
results vary. There are 10° simulation runs performed, each one
using a sample size of m = 5,25, 50, 100, and 150 with true
parameter Ay, equal to [2,2.5]. In this simulated experiment,
the following two metrics are used as performance indicators
for each of our simulated data samples:

Mo/~
T Ay —A
Mean bias (MBN) = M’ (33)
M
where M is the total number of runs in the simulation
experiment.

M (3 2
oAy —A
Root mean square bias (RMSBy ) = W
(34)

For the sake of simulation, all computations are carried
out using R software. The metrics MBy and RMSBy have
been calculated for the abovementioned sample sizes and are
given in Table 1.

We can see from the findings in Table 1 that the biases
diminish as the sample size m rises. It can infer from the
results that the neutrosophic estimate provides more reliable
results when the sample size is increased.

4. Simulation Study

In this section, simulated data of 100000 observations from
the NMD have been generated with the inverse transfor-
mation approach. Random numbers from a given distri-
bution are created using the inverse transformation
technique by solving the following equation for Qup at
predetermined values of distributional parameter:

Qup = F ' (w), (35)

Journal of Function Spaces

TaBLE 1: Performance of the ML estimator of NMD for simulated
data.

Sample size (m) MBy RMSBy

5 (0.01762, 0.01971) (0.24273, 0.27431)
25 (0.00227, 0.00246) (0.10453, 0.11697)
50 (0.00137, 0.00156) (0.07321, 0.08235)
100 (0.00064, 0.00071) (0.05198, 0.05812)
150 (0.00032, 0.00047) (0.03621, 0.03924)

where F~! denotes the inverse of a particular distribution
function, u ~ U[0, 1], and Qyp is the quantile point of the
distribution.

In the case of NMD, equation (35) can be expressed as

2 [3 wz] (36)
— V|| =u
Va2,

By solving equation (35) for w at a particular value of the
parameter, say Ay, = [1, 1.5] and 100000 random values from
the uniform distribution resulted in 100000 different neu-
trosophic samples from NMD. The closed-form expression
for equation (36) does not exist because of the intractable
nature of 75 (w). The function 7, (w) cannot be used ex-
plicitly for generating random numbers. Alternatively, the
quantile points and other useful statistics can be estimated
by using R as a programming language. The basic quantile
points and other useful descriptive measures for different
values of A, estimated over 100000 runs are given in Table 2.

Table 2 provides the useful statistics of NMD estimated
over simulated data in interval forms due to the fact that the
parameter Ay is not precisely determined. Notice that values
of skewness and kurtosis coefficients are invariant and crisp
numbers because of the fact that they are do not involve
indeterminate parameter in their expressions. Additionally,
results of NMD coincide with the conventional model of the
Maxwell distribution if upper and lower limits become the
same, as given in the last column of Table 2.

5. Real Application

In this part, we have applied our suggested model to
COVID-19 mean incubation time data obtained from the
source [30]. Infectious illness incubation periods or the time
between infection with a microbe and disease manifestation
are directly significant to prevention and control. One of the
most significant indicators of disease propagation and
quarantine measures is the incubation period, which is the
time period between infection and the start of symptoms
[31]. Explicit models of the incubation time help us better
understand how diseases spread. Infectious illnesses have an
incubation time that may vary from a few hours, as is usual
in the case of severe food poisoning, too many decades, as is
the case with HIV and TB [32]. It is helpful in clinical
practice for drawing rough estimates about the origins and
sources of infection of specific patients and for establishing
treatment methods that allow the incubation period to be
prolonged. When dealing with a point source epidemic,
being aware of the incubation period model allows for



Journal of Function Spaces

TaBLE 2: Descriptive measures and quantile points of NMD for simulated data.

Statistical measures Ay = (1,1.5)

Ay = (2,3) Ay = (4,4)

(1.593, 2.390)
(0.672, 1.009)
(0.526, 0.526)
(3.253, 3.253)
(1.102, 1.654)
(1.532, 2.298)
(2.012, 3.018)

Mean

Standard deviation
Skewness coefficient
Kurtosis

First quantile
Second quantile
Third quantile

(3.186, 4.780)
(1.345, 2.018)
(0.526, 0.526)
(3.253, 3.253)
(2.205, 3.308)
(3.064, 4.596)
(4.024, 6.037)

(6.373, 6.373)
(2.691, 2.691)
(0.526, 0.526)
(3.253, 3.253)
(4.411, 4.411)
(6.128, 6.128)
(8.049, 8.049)
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F1GURE 3: Fitting of NMD on incubation period data. (a) Empirical and theoretical dens. (b) Q-Q plot. (c) Empirical and theoretical CDFs.

(d) P-P plot.

statistical assessment of exposure time [33]. Furthermore,
identifying the incubation time distribution permits statis-
tical assessment of the period of exposure during a point
source epidemic, as well as a testing hypothesis to assess
whether the pandemic has stopped. The incubation period
distribution is important in statistical techniques for
reconstructing epidemic curves and forecasting future illness
incidence. The incubation period is easily determined from
data showing the time of disclosure, such as experimental
inoculation data and case travel records, since most infection
occurrences are not clearly apparent. A coronavirus that
causes severe acute respiratory illness is the cause of
COVID-19 [34]. It has expanded to 223 nations and has been
labeled a pandemic by the World Health Organization on
March 11, 2020, after spreading rapidly. The average in-
cubation time for COVID-19 is 2.87 days; however, the
variation is as broad as 17.6 days. Existing studies have

demonstrated that the distribution of the incubation period
varies considerably, most likely due to the study population
and estimation methods used. The data on incubation pe-
riods are not precisely measured. In general, the patient self-
reports the beginning date of the symptom, which is deemed
accurate but very rare. As a result, determining the incu-
bation period without clear information about the moment
of exposure is often challenging. Thus, instead of exact
values, the mean incubation period globally from the source
is provided with uncertainties instead of crisp numbers, as
given in Table 2. Uncertainties in the mean incubation
period are created to the strategy designed in [35].

To see Maxwell distribution is one of the reasonable
models for describing the incubation period data, an in-
formal graphical approach has been used. The visual fit of the
Maxwell distribution on actual mean incubation period data
is shown in Figure 3.



TaBLE 3: Mean incubation periods with uncertainties for COVID-
19.

Mean incubation time

(7.82, 8.37) (8.24, 9.88) (4.95, 5.40) (7.55, 8.88)
(4.15, 5.89) (6.87, 7.04) (5.43, 6.52) (4.79, 5.89)
(6.87, 7.55) (5.52, 6.73) (5.08, 6.93) (6.62, 7.45)
(3.33, 4.67) (4.90, 5.57) (6.61, 7.10) (3.92, 5.09)
(8.18, 9.24) (6.62, 7.11) (5.48, 6.62) (4.18, 5.97)
(5.50, 7.18) (9.96, 11.09) (8.04, 9.44) (7.37, 8.99)
(5.28, 6.65) (9.99, 10.70) (10.66, 11.68) (8.27, 9.09)
(5.78, 5.12) (5.43, 6.19) (4.84, 6.16) (4.38, 5.40)
(6.45, 7.39) (6.33, 7.79) (5.58, 6.02) (2.21, 3.47)
(7.39, 8.25) (6.21, 6.86) (6.01, 7.31) (6.30, 7.43)
(5.61, 6.64) (5.82, 6.49) (5.26, 5.81) (3.23, 2.21)
(7.51, 8.01) (4.34, 5.13) (4.67, 5.23) (4.31, 4.96)

TaBLE 4: Descriptive statistics of mean incubation period data using
the proposed neutrosophic approach.

Neutrosophic measures Fitted results

Mean (5.81, 6.62)
Variance (5.92, 7.90)
Kurtosis coefficient 0.12
Skewness coefficient 0.49

The subjective examination of extensively used plots, i.e.,
frequency distribution, probability plot, quantile plot, and
CDF clearly indicates that the Maxwell model is more likely
an adequate model for incubation period data. This is
inferred from Figure 3 that most real data do not much
deviate from the theoretical red lines, suggesting that
Maxwell distribution is a reasonable model for the meantime
incubation period. More naturally, the incubation period
data involving uncertainties (Table 3) cannot be analyzed
using the conventional Maxwell distribution. The statistical
description of the incubation period data using the density of
NMD is given in Table 4.

Table 4 provides the fitted measures of mean incubation
period data in the form of intervals for mean and variance
due to the estimated uncertainty parameter 1y. Note that
kurtosis and skewness coefficients are crisp values because
analytical results as given in equations (13) and (16) do not
depend on the estimated parameter value. Thus, the pro-
posed model provides more useful information and effi-
ciently analyzes data involving uncertainties.

6. Conclusions

A novel extension, so-called the neutrosophic Maxwell
distribution (NMD) has been presented in this study. This
new generalization is designed on the notions of neu-
trosophic calculus. Various distributional features such as
mean, variance, distribution function, and shape coeflicients
have been explored in the neutrosophic framework. Nu-
merical examples considered in this study demonstrated that
theoretical results of NMD are elastic and appropriate to a
wide variety of data. The quantile function has been de-
veloped to simulate numerical data and investigate the
statistical properties of the proposed model. The estimation
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approach of maximum likelihood has been established and
applied to simulated data. Results from the simulation study
indicate that reliable estimates from the proposed model can
be obtained with a larger sample size. The COVID-19 in-
cubation time data have been utilized to describe how the
proposed model can be implemented in practice. The in-
cubation period for COVID-19 is not precisely measured
and hence can easily be analyzed using NMD. It has been
shown in the application section that the suggested model
can analyze classical datasets and real-world data containing
imprecision, vagueness, or uncertainties.

Future studies can be designed to improve the capability
of the proposed model for handling indeterminate data in
estimation approaches. In addition, this study would be
helpful to design improved multivariate models for esti-
mating mean incubation periods for other infectious
diseases.
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