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Abstract 

 

The main goal of this paper is to study the properties of symbolic 7-plithogenic matrices with real entries, where 

an algebraic view of their properties and relations will be presented and discussed. Also, we present many 

theorems that concern the computing of their eigenvalues and eigenvectors and their connection with classical 

ordinary matrices. Many related examples will be provided to clarify the validity of our work. 

 

Keywords: symbolic 7-plithogenic matrix; symbolic plithogenic eigenvalue; symbolic plithogenic eigenvector. 

 

1. Introduction  

Generalizing classical matrices into many new numerical systems was applied by many authors, where we can 

find the building of neutrosophic matrices [1], refined matrices [2], and split-complex matrices [3]. 

The connections between these generalizations and the classical systems of matrices were handled by many 

authors. For example, the problem of diagonalization [4], the Invertibility [5], and their applications in linear 

functions [6]. 

In [7], the concept of symbolic n-plithogenic algebraic structures was proposed by Smarandache, then it was 

used on a wide range by many researchers to generalize classical algebraic structures such as modules [8], spaces 

[9-10], equations [11], and number theory [12-13]. 

In [14], the concept of symbolic 2-plithogenic matrices was presented with many applications in the theory of 

algebraic equations and representing functions. Laterally, symbolic 3-plithogenic matrices and 4-plithogenic 

matrices were studied from many algebraic sides, especially those which are related to the diagonalization 

problem [15]. 

This has motivated us to define and study for the first time the symbolic 7-plithogenic square matrices. We 

present many effective algorithms for computing determinants, Invertibility, and eigenvalues. 

For basic definitions about symbolic 2-plithogenic, 3-plihogenic, 4-plithogenic, 5 and 6-plithogenic square 

matrices, see [14-16]. 

Main Discussion 

Definition:  

The square symbolic 7-plithogenic matrix is defined as follows: 

𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1 ; (𝐴𝑖)𝑛×𝑛 is square matrix of real entries. 

Example. 

Consider the symbolic 7-plithogenic matrix: 

https://doi.org/10.54216/PMTCS.010201
mailto:khagijabenothman33@gmail.com
mailto:Vonshtawzen1970abc@gmail.com
mailto:khaldiahmad1221@gmail.com
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𝐴 = (
1 0
2 1

) + (
1 1
1 1

) 𝑃1 + (
2 −1
3 2

) 𝑃2 + (
4 −1
−1 2

) 𝑃3 + (
5 5
0 0

) 𝑃4 + (
1 1
−1 −2

)𝑃5 + (
1 1
−1 −2

)𝑃6 +

(
1 1
−1 −2

)𝑃7. 

Definition. 

Let 𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1  be a symbolic 7-plithogenic matrix of size 𝑛 × 𝑛, hence: 

det 𝐴 = det(𝐴0) + [det (∑𝐴𝑖

1

𝑖=0

) − det(𝐴0)] 𝑃1 + [det (∑𝐴𝑖

2

𝑖=0

) − det (∑𝐴𝑖

1

𝑖=0

)]𝑃2

+ [det (∑𝐴𝑖

3

𝑖=0

) − det (∑𝐴𝑖

2

𝑖=0

)]𝑃3 + [det (∑𝐴𝑖

4

𝑖=0

) − det (∑𝐴𝑖

3

𝑖=0

)]𝑃4

+ [det (∑𝐴𝑖

5

𝑖=0

) − det (∑𝐴𝑖

4

𝑖=0

)]𝑃5 + [det (∑𝐴𝑖

6

𝑖=0

) − det (∑𝐴𝑖

5

𝑖=0

)]𝑃6

+ [det (∑𝐴𝑖

7

𝑖=0

) − det (∑𝐴𝑖

6

𝑖=0

)]𝑃7 

Theorem1. 

Let 𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1  be a symbolic 7-plithogenic matrix of size 𝑛 × 𝑛, hence: 

1. 𝐴 is invertible if and only if det 𝐴 is an invertible symbolic 7-plithogenic number. 

2. 𝐴−1 = 𝐴0
−1 + [(∑ 𝐴𝑖

1
𝑖=0 )−1 − 𝐴0

−1]𝑃1 + [(∑ 𝐴𝑖
2
𝑖=0 )−1 − (∑ 𝐴𝑖

1
𝑖=0 )−1]𝑃2 + [(∑ 𝐴𝑖

3
𝑖=1 )−1 −

(∑ 𝐴𝑖
2
𝑖=0 )−1]𝑃3 + [(∑ 𝐴𝑖

4
𝑖=1 )−1 − (∑ 𝐴𝑖

3
𝑖=0 )−1]𝑃4 + [(∑ 𝐴𝑖

5
𝑖=1 )

−1
− (∑ 𝐴𝑖

4
𝑖=0 )−1] 𝑃5 + [(∑ 𝐴𝑖

6
𝑖=1 )−1 −

(∑ 𝐴𝑖
5
𝑖=0 )

−1
] 𝑃6 + [(∑ 𝐴𝑖

7
𝑖=1 )−1 − (∑ 𝐴𝑖

6
𝑖=0 )−1]𝑃7 

Definition. 

Let 𝑡 = 𝑡0 + ∑ 𝑡𝑖𝑃𝑖
7
𝑖=1  be a symbolic 7-plithogenic real number and 𝐴 = 𝐴0 + ∑ 𝐴𝑖𝑃𝑖

7
𝑖=1  be a symbolic 7-

plithogenic square real matrix, then 𝑡 is called symbolic 7-plithogenic eigen values if and only if 𝐴𝑋 = 𝑡𝑋. 

𝑋 is called symbolic 7-plithogenic eigenvector. 

Theorem2. 

Let 𝑡 = 𝑡0 + ∑ 𝑡𝑖𝑃𝑖
7
𝑖=1 ∈ 7 − 𝑆𝑃𝑅, 𝑋 = 𝑋0 + ∑ 𝑋𝑖𝑃𝑖

7
𝑖=1  be a symbolic 7-plithogeni real vector, then 𝑡 is eigen 

value of 𝐴 = 𝐴0 + ∑ 𝐴𝑖𝑃𝑖
7
𝑖=1  with 𝑋 as the corresponding eigen vector if and only if: 

∑ 𝑡𝑖
𝑗
𝑖=0  is eigen value of ∑ 𝐴𝑖

𝑗
𝑖=0  with ∑ 𝑋𝑖

𝑗
𝑖=0  as eigen vector with 0 ≤ 𝑗 ≤ 7. 

Theorem3. 

𝐴𝑛 = 𝐴0
𝑛 + 𝑃1 [(∑𝐴𝑖

1

𝑖=0

)

𝑛

− 𝐴0
𝑛] + [(∑𝐴𝑖

2

𝑖=0

)

𝑛

− (∑𝐴𝑖

1

𝑖=0

)

𝑛

] 𝑃2 + [(∑𝐴𝑖

3

𝑖=1

)

𝑛

− (∑𝐴𝑖

2

𝑖=0

)

𝑛

] 𝑃3

+ [(∑𝐴𝑖

4

𝑖=1

)

𝑛

− (∑𝐴𝑖

3

𝑖=0

)

𝑛

] 𝑃4 + [(∑𝐴𝑖

5

𝑖=1

)

𝑛

− (∑𝐴𝑖

4

𝑖=0

)

𝑛

] 𝑃5 + [(∑𝐴𝑖

6

𝑖=1

)

𝑛

− (∑𝐴𝑖

5

𝑖=0

)

𝑛

] 𝑃6

+ [(∑𝐴𝑖

7

𝑖=1

)

𝑛

− (∑𝐴𝑖

6

𝑖=0

)

𝑛

] 𝑃7 

Theorem4. 

Let 𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1  be a square 7-plithogenic invertible real matrix, then: 

1). det(𝐴−1) = (det 𝐴)−1 

2). det 𝐴𝑡 = det 𝐴 

3). det(𝐴. 𝐵) = det 𝐴 . det 𝐵 ;𝐵 = 𝐵0 +∑ 𝐵𝑖𝑃𝑖
7
𝑖=1 . 

Definition. 

Let 𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1  be a symbolic 7-plithogenic real square matrix, then: 

𝐴 is called orthogonal if and only if 𝐴𝑡 = 𝐴−1. 

Theorem5. 

𝐴 is orthogonal if and only if ∑ 𝐴𝑖
𝑗
𝑖=0 ;  0 ≤ 𝑗 ≤ 7 is orthogonal. 

Definition. 

Let 𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1  be a symbolic 7-plithogenic complex square matrix, then 𝐴 is called Hermit matrix if 

𝐴∗ = (�̅�)𝑡 = 𝐴−1. 

Theorem6. 

𝐴 is Hermit matrix if and only if ∑ 𝐴𝑖
𝑗
𝑖=0 ;  0 ≤ 𝑗 ≤ 7 is Hermit matrix. 

https://doi.org/10.54216/PMTCS.010201
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Proof of theorem1. 

1). Let 𝐴 = 𝐴0 +∑ 𝐴𝑖𝑃𝑖
7
𝑖=1 , then 𝐴 is invertible if and only if there exists 𝐵 = 𝐵0 + ∑ 𝐵𝑖𝑃𝑖

7
𝑖=1  such that: 

𝐴 × 𝐴 = 𝑈𝑛×𝑛, hence: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝐴0𝐵0 = 𝑈𝑛×𝑛

∑𝐴𝑖

1

𝑖=0

∑𝐵𝑖

1

𝑖=0

− 𝐴0𝐵0 = 𝑂𝑛×𝑛

∑𝐴𝑖

2

𝑖=0

∑𝐵𝑖

2

𝑖=0

−∑𝐴𝑖

1

𝑖=0

∑𝐵𝑖

1

𝑖=0

= 𝑂𝑛×𝑛

∑𝐴𝑖

3

𝑖=0

∑𝐵𝑖

3

𝑖=0

−∑𝐴𝑖

2

𝑖=0

∑𝐵𝑖

2

𝑖=0

= 𝑂𝑛×𝑛

∑𝐴𝑖

4

𝑖=0

∑𝐵𝑖

4

𝑖=0

−∑𝐴𝑖

3

𝑖=0

∑𝐵𝑖

3

𝑖=0

= 𝑂𝑛×𝑛

∑𝐴𝑖

5

𝑖=0

∑𝐵𝑖

5

𝑖=0

−∑𝐴𝑖

4

𝑖=0

∑𝐵𝑖

4

𝑖=0

= 𝑂𝑛×𝑛

∑𝐴𝑖

6

𝑖=0

∑𝐵𝑖

6

𝑖=0

−∑𝐴𝑖

5

𝑖=0

∑𝐵𝑖

5

𝑖=0

= 𝑂𝑛×𝑛

∑𝐴𝑖

7

𝑖=0

∑𝐵𝑖

7

𝑖=0

−∑𝐴𝑖

6

𝑖=0

∑𝐵𝑖

6

𝑖=0

= 𝑂𝑛×𝑛

 

This implies that: 

{

𝐴0𝐵0 = 𝑈𝑛×𝑛

∑𝐴𝑖

𝑗

𝑖=0

∑𝐵𝑖

𝑗

𝑖=0

= 𝑈𝑛×𝑛
;  1 ≤ 𝑗 ≤ 7 

Hence det(∑ 𝐴𝑖
𝑗
𝑖=0 ) ≠ 0 for all 1 ≤ 𝑗 ≤ 7, so that det(𝐴) is invertible in 7 − 𝑆𝑃𝑅. 

2). It holds directly from the previous statement as follows: 

∑ 𝐵𝑖
𝑗
𝑖=0 = (∑ 𝐴𝑖

𝑗
𝑖=0 )

−1
for 1 ≤ 𝑗 ≤ 7, hence: 

𝐴−1 = 𝐴0
−1 + 𝑃1 [(∑𝐴𝑖

1

𝑖=0

)

−1

− 𝐴0
−1] + [(∑𝐴𝑖

2

𝑖=0

)

−1

− (∑𝐴𝑖

1

𝑖=0

)

−1

] 𝑃2 + [(∑𝐴𝑖

3

𝑖=1

)

−1

− (∑𝐴𝑖

2

𝑖=0

)

−1

] 𝑃3

+ [(∑𝐴𝑖

4

𝑖=1

)

−1

− (∑𝐴𝑖

3

𝑖=0

)

−1

] 𝑃4 + [(∑𝐴𝑖

5

𝑖=1

)

−1

− (∑𝐴𝑖

4

𝑖=0

)

−1

] 𝑃5

+ [(∑𝐴𝑖

6

𝑖=1

)

−1

− (∑𝐴𝑖

5

𝑖=0

)

−1

] 𝑃6 + [(∑𝐴𝑖

7

𝑖=1

)

−1

− (∑𝐴𝑖

6

𝑖=0

)

−1

] 𝑃7 

Proof of theorem2. 

It is clear that 𝑡 is an eigen value of 𝐴 with 𝑋 as an eigen vector if and only if: 

𝐴. 𝑋 = 𝑡. 𝑋, which is equivalent to: 

{

𝐴0𝑋0 = 𝑡0𝑋0

∑𝐴𝑖

𝑗

𝑖=0

∑𝑋𝑖

𝑗

𝑖=0

=∑𝑡𝑖

𝑗

𝑖=0

∑𝑋𝑖

𝑗

𝑖=0

;  1 ≤ 𝑗 ≤ 7 

Which is equivalent to the following statement: 

∑ 𝑡𝑖
𝑗
𝑖=0  is an eigen value of ∑ 𝐴𝑖

𝑗
𝑖=0  with ∑ 𝑋𝑖

𝑗
𝑖=0  as an eigen vector for all 1 ≤ 𝑗 ≤ 7. 

Proof of theorem3. 

It holds directly as a special case of natural powers in symbolic 7-plithogenic rings. 

Proof of theorem4. 

1). 𝑑𝑒𝑡𝐴−1 = 𝑑𝑒𝑡(𝐴0
−1) + 𝑃1[𝑑𝑒𝑡(∑ 𝐴𝑖

1
𝑖=0 )−1 − 𝑑𝑒𝑡(𝐴0

−1)] + [𝑑𝑒𝑡(∑ 𝐴𝑖
2
𝑖=0 )−1 − 𝑑𝑒𝑡(∑ 𝐴𝑖

1
𝑖=0 )−1]𝑃2 +

[𝑑𝑒𝑡(∑ 𝐴𝑖
3
𝑖=1 )−1 − 𝑑𝑒𝑡(∑ 𝐴𝑖

2
𝑖=0 )−1]𝑃3 + [𝑑𝑒𝑡(∑ 𝐴𝑖

4
𝑖=1 )−1 − 𝑑𝑒𝑡(∑ 𝐴𝑖

3
𝑖=0 )−1]𝑃4 + [𝑑𝑒𝑡(∑ 𝐴𝑖

5
𝑖=1 )

−1
−

https://doi.org/10.54216/PMTCS.010201
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𝑑𝑒𝑡(∑ 𝐴𝑖
4
𝑖=0 )−1] 𝑃5 + [𝑑𝑒𝑡(∑ 𝐴𝑖

6
𝑖=1 )−1 − 𝑑𝑒𝑡(∑ 𝐴𝑖

5
𝑖=0 )

−1
] 𝑃6 + [𝑑𝑒𝑡(∑ 𝐴𝑖

7
𝑖=1 )−1 − 𝑑𝑒𝑡(∑ 𝐴𝑖

6
𝑖=0 )−1]𝑃7 =

(𝑑𝑒𝑡𝐴)−1. 

2). 𝐴𝑡 = 𝐴0
𝑡 + 𝐴1

𝑡𝑃1 + 𝐴2
𝑡𝑃2 + 𝐴3

𝑡𝑃3 + 𝐴4
𝑡𝑃4 + 𝐴5

𝑡𝑃5 + 𝐴6
𝑡𝑃6 + 𝐴7

𝑡𝑃7. 

𝑑𝑒𝑡𝐴𝑡 = 𝑑𝑒𝑡(𝐴0
𝑡) + [𝑑𝑒𝑡(∑ 𝐴𝑖

𝑡1
𝑖=0 ) − 𝑑𝑒𝑡(𝐴0

𝑡)]𝑃1 + [𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡2

𝑖=0 ) − 𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡1

𝑖=0 )]𝑃2 + [𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡3

𝑖=0 ) −

𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡2

𝑖=0 )]𝑃3 + [𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡4

𝑖=0 ) − 𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡3

𝑖=0 )]𝑃4 + [𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡5

𝑖=0 ) − 𝑑𝑒𝑡 (∑ 𝐴𝑖
𝑡4

𝑖=0 )]𝑃5 +

[𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡6

𝑖=0 ) − 𝑑𝑒𝑡 (∑ 𝐴𝑖
𝑡5

𝑖=0 )]𝑃6 + [𝑑𝑒𝑡(∑ 𝐴𝑖
𝑡7

𝑖=0 ) − 𝑑𝑒𝑡 (∑ 𝐴𝑖
𝑡6

𝑖=0 )]𝑃7 = det(𝐴0) + [det(∑ 𝐴𝑖
1
𝑖=0 ) −

det(𝐴0)]𝑃1 + [det(∑ 𝐴𝑖
2
𝑖=0 ) − det(∑ 𝐴𝑖

1
𝑖=0 )]𝑃2 + [det(∑ 𝐴𝑖

3
𝑖=0 ) − det(∑ 𝐴𝑖

2
𝑖=0 )]𝑃3 + [det(∑ 𝐴𝑖

4
𝑖=0 ) −

det(∑ 𝐴𝑖
3
𝑖=0 )]𝑃4 + [det(∑ 𝐴𝑖

5
𝑖=0 ) − det(∑ 𝐴𝑖

4
𝑖=0 )]𝑃5 + [det(∑ 𝐴𝑖

6
𝑖=0 ) − det(∑ 𝐴𝑖

5
𝑖=0 )]𝑃6 + [det(∑ 𝐴𝑖

7
𝑖=0 ) −

det(∑ 𝐴𝑖
6
𝑖=0 )]𝑃7 = 𝑑𝑒𝑡𝐴. 

3). we have: 

𝐴. 𝐵 = 𝐴0𝐵0 + [∑ 𝐴𝑖
1
𝑖=0 ∑ 𝐵𝑖

1
𝑖=0 − 𝐴0𝐵0]𝑃1 + [∑ 𝐴𝑖

2
𝑖=0 ∑ 𝐵𝑖

2
𝑖=0 − ∑ 𝐴𝑖

1
𝑖=0 ∑ 𝐵𝑖

1
𝑖=0 ]𝑃2 + [∑ 𝐴𝑖

3
𝑖=0 ∑ 𝐵𝑖

3
𝑖=0 −

∑ 𝐴𝑖
2
𝑖=0 ∑ 𝐵𝑖

2
𝑖=0 ]𝑃3 + [∑ 𝐴𝑖

4
𝑖=0 ∑ 𝐵𝑖

4
𝑖=0 − ∑ 𝐴𝑖

3
𝑖=0 ∑ 𝐵𝑖

3
𝑖=0 ]𝑃4 + [∑ 𝐴𝑖

5
𝑖=0 ∑ 𝐵𝑖

5
𝑖=0 −∑ 𝐴𝑖

4
𝑖=0 ∑ 𝐵𝑖

4
𝑖=0 ]𝑃5 +

[∑ 𝐴𝑖
6
𝑖=0 ∑ 𝐵𝑖

6
𝑖=0 − ∑ 𝐴𝑖

5
𝑖=0 ∑ 𝐵𝑖

5
𝑖=0 ]𝑃6 + [∑ 𝐴𝑖

7
𝑖=0 ∑ 𝐵𝑖

7
𝑖=0 − ∑ 𝐴𝑖

6
𝑖=0 ∑ 𝐵𝑖

6
𝑖=0 ]𝑃7. 

𝑑𝑒𝑡(𝐴. 𝐵) = 𝑑𝑒𝑡(𝐴0𝐵0) + [𝑑𝑒𝑡(∑ 𝐴𝑖
1
𝑖=0 ∑ 𝐵𝑖

1
𝑖=0 ) − 𝑑𝑒𝑡(𝐴0𝐵0)]𝑃1 + [𝑑𝑒𝑡(∑ 𝐴𝑖

2
𝑖=0 ∑ 𝐵𝑖

2
𝑖=0 ) −

𝑑𝑒𝑡(∑ 𝐴𝑖
1
𝑖=0 ∑ 𝐵𝑖

1
𝑖=0 )]𝑃2 + [𝑑𝑒𝑡(∑ 𝐴𝑖

3
𝑖=0 ∑ 𝐵𝑖

3
𝑖=0 ) − 𝑑𝑒𝑡(∑ 𝐴𝑖

2
𝑖=0 ∑ 𝐵𝑖

2
𝑖=0 )]𝑃3 + [𝑑𝑒𝑡(∑ 𝐴𝑖

4
𝑖=0 ∑ 𝐵𝑖

4
𝑖=0 ) −

𝑑𝑒𝑡(∑ 𝐴𝑖
3
𝑖=0 ∑ 𝐵𝑖

3
𝑖=0 )]𝑃4 + [𝑑𝑒𝑡(∑ 𝐴𝑖

5
𝑖=0 ∑ 𝐵𝑖

5
𝑖=0 ) − 𝑑𝑒𝑡 (∑ 𝐴𝑖

4
𝑖=0 ∑ 𝐵𝑖

4
𝑖=0 )]𝑃5 + [𝑑𝑒𝑡(∑ 𝐴𝑖

6
𝑖=0 ∑ 𝐵𝑖

6
𝑖=0 ) −

𝑑𝑒𝑡 (∑ 𝐴𝑖
5
𝑖=0 ∑ 𝐵𝑖

5
𝑖=0 )]𝑃6 + [𝑑𝑒𝑡(∑ 𝐴𝑖

7
𝑖=0 ∑ 𝐵𝑖

7
𝑖=0 ) − 𝑑𝑒𝑡 (∑ 𝐴𝑖

6
𝑖=0 ∑ 𝐵𝑖

6
𝑖=0 )]𝑃7 = 𝑑𝑒𝑡(𝐴0)𝑑𝑒𝑡(𝐵0) +

[𝑑𝑒𝑡(∑ 𝐴𝑖
𝑗
𝑖=0 ). 𝑑𝑒𝑡(∑ 𝐵𝑖

𝑗
𝑖=0 ) − 𝑑𝑒𝑡(∑ 𝐴𝑖−1

𝑗−1
𝑖=1 ). 𝑑𝑒𝑡(∑ 𝐵𝑖−1

𝑗−1
𝑖=1 )]𝑃𝑖 = 𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝐵); 1 ≤ 𝑗 ≤ 7. 

Proof of theorem5. 

𝐴 is orthogonal if and only if 𝐴𝑡 = 𝐴−1, hence: 

𝐴0
𝑡 + ∑ 𝐴𝑖

𝑡𝑃𝑖
7
𝑖=1 = 𝐴0

−1 + [(∑ 𝐴𝑖
1
𝑖=0 )−1 − 𝐴0

−1]𝑃1 + [(∑ 𝐴𝑖
2
𝑖=0 )−1 − (∑ 𝐴𝑖

1
𝑖=0 )−1]𝑃2 + [(∑ 𝐴𝑖

3
𝑖=1 )−1 −

(∑ 𝐴𝑖
2
𝑖=0 )−1]𝑃3 + [(∑ 𝐴𝑖

4
𝑖=1 )−1 − (∑ 𝐴𝑖

3
𝑖=0 )−1]𝑃4 + [(∑ 𝐴𝑖

5
𝑖=1 )

−1
− (∑ 𝐴𝑖

4
𝑖=0 )−1] 𝑃5 + [(∑ 𝐴𝑖

6
𝑖=1 )−1 −

(∑ 𝐴𝑖
5
𝑖=0 )

−1
] 𝑃6 + [(∑ 𝐴𝑖

7
𝑖=1 )−1 − (∑ 𝐴𝑖

6
𝑖=0 )−1]𝑃7, thus: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝐴0
𝑡 = 𝐴0

−1

𝐴1
𝑡 = (∑𝐴𝑖

1

𝑖=0

)

−1

− 𝐴0
−1

𝐴2
𝑡 = (∑𝐴𝑖

2

𝑖=0

)

−1

− (∑𝐴𝑖

1

𝑖=0

)

−1

𝐴3
𝑡 = (∑𝐴𝑖

3

𝑖=0

)

−1

− (∑𝐴𝑖

2

𝑖=0

)

−1

𝐴4
𝑡 = (∑𝐴𝑖

4

𝑖=0

)

−1

− (∑𝐴𝑖

3

𝑖=0

)

−1

𝐴5
𝑡 = (∑𝐴𝑖

5

𝑖=0

)

−1

− (∑𝐴𝑖

4

𝑖=0

)

−1

𝐴6
𝑡 = (∑𝐴𝑖

6

𝑖=0

)

−1

− (∑𝐴𝑖

5

𝑖=0

)

−1

𝐴7
𝑡 = (∑𝐴𝑖

7

𝑖=0

)

−1

− (∑𝐴𝑖

6

𝑖=0

)

−1

 

This implies that: 
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{
 
 
 
 

 
 
 
 

𝐴0
𝑡 = 𝐴0

−1

∑ 𝐴𝑖
𝑡1

𝑖=0 = (∑ 𝐴𝑖
1
𝑖=0 )−1

∑ 𝐴𝑖
𝑡2

𝑖=0 = (∑ 𝐴𝑖
2
𝑖=0 )−1

∑ 𝐴𝑖
𝑡3

𝑖=0 = (∑ 𝐴𝑖
3
𝑖=0 )−1

∑ 𝐴𝑖
𝑡4

𝑖=0 = (∑ 𝐴𝑖
4
𝑖=0 )−1

∑ 𝐴𝑖
𝑡5

𝑖=0 = (∑ 𝐴𝑖
5
𝑖=0 )

−1

∑ 𝐴𝑖
𝑡6

𝑖=0 = (∑ 𝐴𝑖
6
𝑖=0 )−1

∑ 𝐴𝑖
𝑡7

𝑖=0 = (∑ 𝐴𝑖
7
𝑖=0 )−1

, so that our proof is complete. 

Theorem6 can be proven by a similar argument of theorem5. 

Conclusion 

In this paper, we have studied for the first time the square symbolic 7-plithogenic, where we have present many 

effective algorithms for computing determinants, Invertibility, and eigenvalues. 

As a future research direction, we aim to study the diagonalization problem and the representation problem of 

symbolic 7-plithogenic matrices. 
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