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Abstract 

The aim of this paper is to generalize the neutrosophic AH-isometry into the system of refined neutrosophic 

numbers, where it presents an isometer between the refined neutrosophic space with one/two neutrosophic 

dimensions and the cartesian product of classical Euclidean spaces.Also, many refined neutrosophic geometrical 

surfaces such as refined circles and lines will be handled according to the isometry.  
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1.Introduction 

Neutrosophic logic is a generalization of intuitionistic fuzzy logic by adding an indeterminacy   with property 

 =   . 

On the other hand, neutrosophic sets played an interesting role in pure mathematics such as topology and 

analysis [3], spaces [1], and algebraic structures [2-12]. 

Neutrosophic spaces theory began with Agboola et.al [8,9], where they studied neutrosophic vector spaces and 

their properties. 

In [26] the concept of the neutrosophic plane with   neutrosophic dimensions is obtained. In addition, Euclidean 

geometric concepts are extended neutrosophically such as neutrosophic distance, neutrosophic midpoint, 

neutrosophic vectors, neutrosophic circles, and lines. 

This work finds an isometry between the real refined neutrosophic space and the Cartesian product of classical 

Euclidean spaces, which means that the foundations and laws of refined neutrosophic geometry will be 

established. 

 2. Preliminaries 

Definition 2.1: The refined neutrosophic real number has the form              where            are 

real numbers. (We write the refined neutrosophic numbers by the previous form instead of the equivalent form 

             ) 

Remark 2.2 :                          

Definition 2.3:  

Let        )  {                        } be the refined neutrosophic field, we say 

                          if and only if       ,                   and  

           . 
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Theorem2.4:  

The previous relation is a partial order relation (reflexive, anti-symmetric, and transitive). 

3. Main concepts and results 

In the beginning, we will define some basic concepts in refined neutrosophic real numbers, hence we will study 

its relation with classical real numbers. 

Remark 3.1: 

According to Theorem 2.4, we can define positive refined neutrosophic real numbers as follows. 

                         implies that     ,           ,       . 

Absolute value on        ) can be defined as follows: 

|            |  |  |  [|        |  |     |]   [|     |  |  |]  , we can see that 

|            |   . (Under the defined partial order relation). 

We can compute the square root of a refined neutrosophic positive real number as follows: 

√             √   [√         √     ]   [√      √  ]  . 

It is clear that (√   [√         √     ]   [√      √  ]  )
 
              and 

√              . 

Example 3.2: 

            is a refined neutrosophic positive real number, since. 

   ,       )     ,        . 

              , that is because    ,       )        )   , and 

    )        )   . 

 |          |  |  |  [|      |  |    |]   [|    |  |  |]           

 √        √  [√  √ ]   [√  √ ]   √  [  √ ]   [√  √ ]   

Definition 3.3: 

We define the refined neutrosophic plane with N neutrosophic dimensions (N-dimensions) as follows: 

       )         )         )    ⏟
       

        )  
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Example 3.4: 

       )  {                        } is a refined neutrosophic plane with one N-dimension. 

       )
  {                          )                     } is a refined neutrosophic plane 

with two N-dimension. 

In the following, we will focus on the case of two N-dimensional refined neutrosophic plane. 

Definition 3.5: 

Let                            ),                          ) be two refined neutrosophic 

points form        )
 , we define: 

  ⃗⃗⃗⃗  ⃗   [            ]  [           ] [            ]  [            ]), is called a refined 

neutrosophic vector with two N-dimensions. 

Definition 3.6: Let  ⃗                            ) be a refined neutrosophic vector, we define its 

norm as follows: 

‖ ⃗ ‖  √             )
               )

 . 

It easy to see that ‖ ⃗ ‖   , according to remark 3.3. 

Definition 3.7: Let          )
         )

 ,         be the refined neutrosophic plane with two N-

dimensions and Cartesian product of the classical Euclidean space    with  itself respectively, we define the 

refined AH-isometry map as follows: 

                                 )  (                  )                   )) 

We can define the refined one-dimensional AH-isometry between        ) and the space       as follows: 

         )                   )                    ) 

Remark 3.8:The refined one-dimensional AH-isometry is an algebraic isomorphism between       ) and 

     . 

Proof. 

Let                                 be two refined neutrosophic real numbers, then. 

       )    [     ]  [     ]   [     ]  ) 

                                     ) 

                   )                    ) 

               )                )      )      ). 

       )   (             )              )) 

        [                        ]   [              ]  ) 

                                                                       ) 

                   )                   ) 

               )               )      )     ). 

  is a correspondence one-to-one, that is because      )  { }, and for every 

         )       ,there exists       [     ])         )          )such that    )  
         ). 

Thus,   is isomorphism. 
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Theorem 3.9: 

Let                                  )  (                  )                 

  )) be the refined AH-isometry defined abobe, we have: 

(a).  preserves addition operation between vectors. 

(b).   preserves distances between points. 

(c).   is a bijection one-to-one between   and  . 

(d). Multiplying a refined neutrosophic vector by a refined neutrosophic real number is preserved up to refined 

AH-isometry, i.e. 

The direct image of a refined neutrosophic vector multiplied by a refined neutrosophic real number is exactly 

equal to its refined AH- isometric image multiplied by the one-dimensional refined AH- isometric image of the 

corresponding refined neutrosophic real number. 

Proof. 

(a). Let  ⃗                            )                             ) be two refined 

neutrosophic vectors, we have. 

   ⃗    )    [     ]  [     ]   [     ]   [     ]  [     ]   [     ]  ) 

 (                                    )                               

      )) 

 (                  )                   ))  (                  )           

        ))     ⃗ )      ). 

.(b). We must prove that the norm of the classical vector    )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, is exactly equal to the refined one- dimensional 

isometric image of the norm of the neutrosophic vector  ⃗ . 

‖   ⃗ )‖  (  
    

           )
           )

        )
        )

 ) 

Now, 

‖ ⃗ ‖               )
               )

  (  
    

  (  
    

                    

     )   (  
    

             )  ). 

  ‖ ⃗ ‖ )  (  
    

    
    

    
    

                            
    

        

        
    

    
    

             )  (  
    

           )
           )

      

  )
        )

 )  ‖   ⃗ )‖ . 

(c).Let                                                                

Suppose that        )         ), hence 

(                  )                   ))  (                  )           

        )), thus 

                                                                  
     , so                                    , so   is surjective. 

It is clear that   is injective, thus it is a bijection. 

(d).Consider the following refined vector  ⃗                            ) with the following refined 

neutrosopjic real number               , we have. 

  ⃗               )                          ) 

  ⃗  (             )             )              )             )) 
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  ⃗  (                              )                  )                    

              )                  )  )). 

    ⃗ )  (                                                                  

    )                                                                       )). 

    ⃗ )                    )(                  )                   )) 

    ⃗ )                )                            ) 

    ⃗ )     )    ⃗ ). 

Definition 3.10: (refined neutrosophic circle) 

Let                            ) be a fixed refined neutrosophic point, we define the refined 

neutrosophic circle with center   and radius                  to be the set of all two N-dimensional 

points      )                             ); dist    )   . 

Theorem 3.11: 

Let                            ) be a fixed refined neutrosophic point,                be a 

refined neutrosophic real positive number, we have: 

(a). The equation of the refined circle with center   and radius   is: 

   [            ]  [            ])
   [            ]  [            ])

    . 

(b). The previous refined neutrosophic circle is equivalent to the following direct product of three classical 

circles. 

          )
        )

    
 . 

     [        ]  [        ])
   [        ]  [        ])

           )
 . 

      [     ]  [     ])
   [     ]  [     ])

        )
 . 

Proof. 

(a). By using the neutrosophic distance form defined above, we get: 

 [            ]  [            ])
   [            ]  [            ])

     

(b). To obtain the classical equivalent geometrical systems of the refined neutrosophic circle, it is sufficient to 

take its refined AH-isometric image as follows: 

   [            ]  [            ])
   [            ]  [            ])

 )      ) hence. 

       )
   [        ]  [        ])

   [     ]  [     ])
 )         )

   [        ]  
[        ])

   [     ]  [     ])
 )     

           )
        )

 ). 

Thus, we get: 

          )
        )

    
 . 

     [        ]  [        ])
   [        ]  [        ])

           )
 . 

      [     ]  [     ])
   [     ]  [     ])

        )
 . 

Example 3.12: 

Consider the following refined neutrosophic circle: 

     [       ])
     [        ])

          )
  

It is equivalent to the direct product of the following three classical circles: 

         )       )    
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     [        ]   )   [        ]   )    

      [     ]  [  ])   [     ]   )     

Definition 3.13: (refined neutrosophic line) 

We define the refined neutrosophic line by the set of all two N-dimensional points     ) with the property 

                                                                 
                   . 

Theorem 3.14: 

Let           be an equation of a refined neutrosophic line  , this line is equivalent to the direct 

product of the following three classical lines. 

                  

             )         )           )         )           )    

          )      )        )      )        )    

Proof. 

By taking the refined AH-isometric image to the equation          , we get the proof. 

Example 3.15: 

Consider the following refined neutrosophic line: 

            )           )          )    

It is equivalent to the direct product of the following three classical lines: 

              . 

              )           )     . 

            )         )     . 

Remark 3.16: 

The inverse map of the two dimensional AH-isometry is: 

                 )         )  
  (      )       ))     [   ]   [   ]     [   ]   

[   ]  ). 

The inverse of two N-dimensional AH-isometry can be used to turn any point from the classical Euclidean space 

      into the refined neutrosophic equivalent point. 

Conclusion 

In this paper, we have defined the refined AH-isometry between a refined neutrosophic space with two 

dimensions and the Cartesian product of two classical spaces. Also, we have used this isometry to find the 

classical geometrical structure of  refined neutrosophic circle and refined neutrosophic line, where we proved 

that a refined neutrosophic circle is equivalent to three classical circles, and the refined neutrosophic line is  

equivalent to three classical lines. 

As a future research direction, we aim to find the isometry that describes the refined neutrosophic spaces with 

three dimensions. 
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