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Abstract: A defensive alliance in a graph G = (V, E) is a set of vertices S ⊆ V satisfying

the condition that for every vertex v ∈ S, the number of v’s neighbors is at least as large as

the number of v’s neighbors in V − S. For a subset T ⊂ V, T 6= S, a defensive alliance S is

called Smarandachely T -strong, if for every vertex v ∈ S, |N [v]∩S| > |N(v)∩ ((V −S)∪T )|.

In this case we say that every vertex in S is Smarandachely T -strongly defended. Particularly,

if we choose T = ∅, i.e., a Smarandachely ∅-strong is called strong defend for simplicity. The

boundary of a set S is the set ∂S =
⋃

v∈S
N(v) − S. An offensive alliance in a graph G

is a set of vertices S ⊆ V such that for every vertex v in the boundary of S, the number

of v’s neighbors in S is at least as large as the number of v’s neighbors in V − S. In this

paper we study open alliance problem in graphs which was posted as an open question in

[S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, Alliances in graphs, J. Combin. Math.

Combin. Comput. 48 (2004) 157-177].
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§1. Introduction

In this paper we study open alliance in graphs. For graph theory terminology and notation, we

generally follow [3]. For a vertex v in a graph G = (V,E), the open neighborhood of v is the set

N(v) = {u : uv ∈ E}, and the closed neighborhood of v is N [v] = N(v) ∪ {v}. The boundary of

S is the set ∂S =
⋃

v∈S N(v) − S. We denote the degree of v in S by dS(v) = N(v) ∩ S. The

edge connectivity, λ(G), of a graph G is the minimum number of edges in a set, whose removal

results in a disconnected graph. A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E),

written G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. For S ⊆ V , the subgraph induced by S is the graph

G[S] = (S,E ∩ S × S).

The study of defensive alliance problem in graphs, together with a variety of other kinds

of alliances, was introduced in [2]. A non-empty set of vertices S ⊆ V is called a defensive

alliance if for every v ∈ S, |N [v] ∩ S| ≥ |N(v) ∩ (V − S)|. In this case, we say that every

vertex in S is defended from possible attack by vertices in V −S. A defensive alliance is called

strong if for every vertex v ∈ S, |N [v] ∩ S| > |N(v) ∩ (V − S)|. In this case we say that every
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vertex in S is strongly defended. An (strong) alliance S is called critical if no proper subset of

S is an (strong) alliance. The defensive alliance number of G, denoted a(G), is the minimum

cardinality of any critical defensive alliance in G. Also the strong defensive alliance number of

G, denoted â(G), is the minimum cardinality of any critical strong defensive alliance in G. For

a subset T ⊂ V, T 6= S, a defensive alliance S is called Smarandachely T -strong, if for every

vertex v ∈ S, |N [v] ∩ S| > |N(v) ∩ ((V − S) ∪ T )|. In this case we say that every vertex in S

is Smarandachely T -strongly defended. Particularly, if we choose T = ∅, i.e., a Smarandachely

∅-strong is called strong defend for simplicity.

The study of offensive alliances was initiated by Favaron et al in [1]. A non-empty set of

vertices S ⊆ V is called an offensive alliance if for every v ∈ ∂(S), |N(v)∩S| ≥ |N [v]∩(V −S)|.
In this case we say that every vertex in ∂(S) is vulnerable to possible attack by vertices in S. An

offensive alliance is called strong if for every vertex v ∈ ∂(S), |N(v)∩ S| > |N [v]∩ (V − S)|. In

this case we say that every vertex ∂(S) is very vulnerable. The offensive alliance number, ao(G)

of G, is the minimum cardinality of any critical offensive alliance in G. Also the strong offensive

alliance number, âo(G) of G, is the minimum cardinality of any critical strong offensive alliance

in G.

In [2] the authors left the study of open alliances as an open question. In this paper we

study open alliance in graphs. An alliance is called open (or total) if it is defined completely

in terms of open neighborhoods. We study open defensive alliances as well as open offensive

alliances in graphs.

Recall that a vertex of degree one in a graph G is called a leaf and its neighbor is a support

vertex. Let S(G) denote the set all support vertexes of a graph G.

§2. Open Defensive Alliance

Let G = (V,E) be a graph. A set S ⊆ V is an open defensive alliance if for every vertex v ∈ S,

|N(v) ∩ S| ≥ |N(v) ∩ (V − S)|. A set S ⊆ V is an open strong defensive alliance if for every

vertex v ∈ S, |N(v) ∩ S| > |N(v) ∩ (V − S)|. An open (strong) defensive alliance S is called

critical if no proper subset of S is an open (strong) defensive alliance. The open defensive

alliance number, at(G) of G, is the minimum cardinality of any critical open defensive alliance

in G, and the strong open defensive alliance number, ât(G) of G, is the minimum cardinality of

any critical open strong defensive alliance in G.

We remark that with this definition, strong defensive alliance is equivalent to open defensive

alliance, and so we have the following observation.

Observation 2.1 For any graph G, at(G) = â(G).

Thus we focus on open strong defensive alliances in G. We refer to an ât(G)-set as a

minimum open strong defensive alliance in G. By definition we have the following.

Observation 2.2 For any ât(G)-set S in a graph G, G[S] is connected.

Observation 2.3 Let S be an ât(G)-set in a graph G, and v ∈ S. If degG[S](v) = 1, then
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degG(v) = 1.

Note that for any graph G of n vertices 2 ≤ ât(G) ≤ n. In the following we characterize

all graphs of order n having open strong defensive alliance number n. For an integer n let En
be the class of all graphs G such that G ∈ En if and only if one of the following holds:

(1) G is a path on n vertices, (2) G is a cycle on n vertices, (3) G is obtained from a cycle on

n vertices by identifying two non adjacent vertices.

Theorem 2.4 For a connected graph G of n vertices, ât(G) = n if and only if G ∈ En.

Proof First we show that ât(Pn) = ât(Cn) = n. Suppose to the contrary, that ât(Pn) < n.

Let S be a ât(Pn)-set. By Observation 2.2, G[S] is connected. So G[S] is a path. Let v ∈ S

be a vertex such that degG[S](v) = 1. By Observation 2.3, degG(v) = 1. Then G[S] = Pn, a

contradiction. Thus ât(Pn) = n. Similarly, for any other graph in En, ât(G) = n.

For the converse suppose that G is a graph of n vertices and â(G) = n. If ∆(G) ≤ 2,

then G is a path or a cycle on n vertices, as desired. Suppose that ∆(G) ≥ 3. Let v be a

vertex of maximum degree in G. Since V (G) \ {v} is not an open strong defensive alliance in

G, there is a vertex v1 ∈ N(v) such that deg(v1) ≤ 2. If deg(v1) = 1, then V (G) \ {v1} is an

open strong defensive alliance, which is a contradiction. So deg(v1) = 2. Since V (G) \ {v1} is

not an open strong defensive alliance, there is a vertex v2 ∈ N(v1) such that deg(v2) ≤ 2. If

deg(v2) = 1, then V (G) \ {v2} is an open strong defensive alliance, which is a contradiction. So

deg(v2) = 2. Since V (G) \ {v1, v2} is not an open strong defensive alliance, there is a vertex

v3 ∈ N(v2) such that deg(v3) ≤ 2. Continuing this process we obtain a path v1 − v2 − ...− vk

for some k such that deg(vi) = 2 for 1 ≤ i < k and either deg(vk) = 1 or vk = v. If deg(vk) = 1,

then V (G) \ {v1, ..., vk} is an open strong defensive alliance for G. This is a contradiction. So

vk = v. If deg(v) ≥ 5, then V (G) \ {v1, v2, ..., vk−1} is an open strong defensive alliance for

G, a contradiction. So deg(v) = ∆(G) = 4. Since V (G) \ {v1, v2, ..., vk} is not an open strong

defensive alliance, there is a vertex w1 ∈ N(v) \ {v1, vk−1} with deg(w1) ≤ 2. If deg(w1) = 1

then V (G) \ {w1} is an open defensive alliance, a contradiction. So deg(w1) = 2. Since

V (G) \ {v1, v2, ..., vk, w1} is not an open strong defensive alliance, there is a vertex w2 ∈ N(w1)

such that deg(w2) = 2. As before, continuing the process, we deduce that there is a path

w1 −w2 − ...−wl for some l such that deg(vi) = 2 for 1 ≤ i < l and vl = v. Since ∆(G) = 4, we

conclude that G is obtained by identifying a vertex of Ck with a vertex of Cl. This completes

the result. �

As a consequence we have the following result.

Corollary 2.5 For a connected graph G, ât(G) = 2 if and only if G = P2.

For a nonempty set S in a graph G and a vertex x ∈ S, we let degS(v) = N(v) ∩ S. So

a set S ⊆ V is an open defensive alliance if for every vertex v ∈ S, degS(v) ≥ degV−S(v) + 1.

Notice that this is equivalent to 2degS(v) ≥ deg(v) + 1.

Proposition 2.6 For any graph G, ât(G) = 3, if and only if ât(G) 6= 2, and G has an induced

subgraph isomorphic to either (1) the path P3 = u − v − w, where deg(u) = deg(w) = 1 and

2 ≤ deg(v) ≤ 3, or (2) the cycle C3, where each vertex is of degree at most three.
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Proof Let G be a graph. Suppose that ât(G) 6= 2. If G has an induced subgraph P3 =

u − v − w, where deg(u) = deg(w) = 1 and 2 ≤ deg(v) ≤ 3, then {u, v, w} is an open strong

defensive alliance, and so ât(G) = 3. Similarly, if (2) holds, we obtain ât(G) = 3.

Conversely, suppose that ât(G) = 3. So ât(G) 6= 2. Let S = {u, v, w} be a ât(G)-set. By

Observation 2.2, G[S] is connected. If G[S] is a path, then we let degG[S](u) = degG[S](w) = 1.

By definition degG(u) = degG(w) = 1. If degG(v) ≥ 4, then S is not an open strong defensive

alliance, which is a contradiction. So 2 ≤ degG(v) ≤ 3. It remains to suppose that G[S] is a

cycle. If a vertex of S has degree at least four in G, then S is not an open strong defensive

alliance, a contradiction. Thus any vertex of S has degree at most three in G. �

Let G1 be a graph obtained from K4 by removing two edge such that the resulting graph G

has a pendant vertex. Let G2 be a graph obtained from K4 by removing an edge, with vertices

{v1, v2, v3, v4}, where deg(v1) = deg(v2) = 2.

Proposition 2.7 For any graph G, ât(G) = 4 if and only if ât(G) 6∈ {2, 3}, and G has an

induced subgraph isomorphic to one of the following:

(1) P4, with vertices, in order, v1, v2, v3 and v4, where deg(v1) = deg(v4) = 1, and deg(v2)

and deg(v3) are at most three;

(2) C4, where each vertex is of degree at most three;

(3) K4, where each vertex has degree at most five;

(4) K1,3, with vertices {v1, v2, v3, v4}, where deg(vi) = 1 for i = 2, 3, 4, and deg(v1) ≤ 5;

(5) G1, where deg(vi) ≤ 5 for i = 1, 2, 3, 4;

(6) G2, where deg(vi) ≤ 3 for i = 1, 2, and deg(vi) ≤ 5 for i = 3, 4.

Proof It is a routine matter to see that if ât(G) 6∈ {2, 3}, and G has an induced subgraph

isomorphic to (i) for some i ∈ {1, 2, ..., 6}, then ât(G) = 4. Suppose that ât(G) = 4. Let

S = {v1, v2, v3, v4} be a ât(G)-set. By Observation 2.2 G[S] is connected. If G[S] is a path,

then we assume that degG[S](vi) = 1 for i = 1, 4, and degG[S](vi) = 2 for i = 2, 3. Now by

Observation 2.3 deg(vi) = 1 for i = 1, 4, and 4 = 2degG[S](vi) ≥ deg(vi) + 1 which implies that

deg(vi) ≤ 3 for i = 2, 3. We deduce that G has an induced subgraph isomorphic to (1). So

suppose that G[S] is not a path. If G[S] is a cycle then 4 = 2degG[S](vi) ≥ deg(vi) + 1 which

implies that deg(vi) ≤ 3 for i = 1, 2, 3, 4, and so G has an induced subgraph isomorphic to (2).

We assume now that ∆(G[S]) > 2. So ∆(G[S]) = 3. Let degG[S](v1) = 3. If any vertex of G[S]

is of maximum degree then 6 = 2degG[S](vi) ≥ deg(vi) + 1 which implies that deg(vi) ≤ 5 for

i = 1, 2, 3, 4. So G has an induced subgraph isomorphic to (3). Thus we suppose that G[S] is

not complete graph. If degG[S](vi) = 1 for i = 2, 3, 4, then by Observation 2.3 deg(vi) = 1 for

i = 2, 3, 4, and 6 = 2degG[S](v1) ≥ deg(v1) + 1, which implies that deg(v1) ≤ 5. In this case G

has an induced subgraph isomorphic to (4). The other possibilities are similarly verified. �

Proposition 2.8 For the complete graph Kn , ât(Kn) = ⌈n
2
⌉ + 1.

Proof Let S be a ât(Kn)-set and let v ∈ S. It follows that |N(v) ∩ S| ≥ ⌈n
2
⌉. So
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|S| ≥ ⌈n
2
⌉ + 1. On the other hand let S be any subset of ⌈n

2
⌉ + 1 vertices of Kn. For any

vertex v ∈ S,
deg(v) − 1

2
≥ ⌊n

2
⌋ − 1 ≥ degV−S(v). Since deg(v) = degS(v) + degV−S(v),

degS(v) − 1 ≥ degV−S(v). This means that S is a critical open strong defensive alliance, and

the result follows. �

Proposition 2.9 ât(Kr,s) = ⌊r
2
⌋ + ⌊s

2
⌋ + 2.

Proof Let Vr and Vs be the partite sets ofKr,s with |Vr| = r and |Vs| = s. Let S = Sr∪Ss be

a ât(Kr,s)-set, where Si ⊆ Vi for i = r, s. For i ∈ {r, s} and a vertex v ∈ Si, degS(v) ≥ ⌊n− i

2
⌋,

where n = r + s. This implies that |S| ≥ ⌊r
2
⌋ + ⌊s

2
⌋ + 2. On the other hand any set consisting

⌊r
2
⌋+ 1 vertices in Vr and ⌊s

2
⌋+ 1 vertices in Vs forms an open strong defensive alliance. This

completes the proof. �

Similarly the following is verified.

Proposition 2.10

(1) ât(Wn) = ⌈n+ 1

2
⌉ + 1;

(2) ât(Pm × Pn) = max{m,n} if min{m,n} = 1, and ât(Pm × Pn) = min{m,n} if

min{m,n} ≥ 2.

Proposition 2.11 If every vertex of a graph G has odd degree then at(G) = ât(G).

Proof Let G be a graph and every vertex of G has odd degree. First it is obvious that

at(G) = â(G) ≤ ât(G). Let S be a at(G)-set and v ∈ S. By definition degS(v) ≥ degV−s(v).

Since v is of odd degree, we obtain degS(v) ≥ degV−s(v) + 1. This means that S is an open

strong defensive alliance in G, and so ât(G) ≤ at(G). �

So if every vertex of a graph G has odd degree then any bound of at(G) holds for ât(G).

We next obtain some bounds for the open defensive alliance number of a graph G.

Proposition 2.12 For a connected graph G of order n, ât(G) ≤ n−
⌊

δ(G) − 1

2

⌋

.

Proof Let v be a vertex of minimum degree in a connected graph G. Consider a subset

S ⊆ N [v] with |S| = ⌊δ(G) − 1

2
⌋. It follows that V (G) \ S is a critical open strong alliance. �

Proposition 2.13 For any graph G, ât(G) ≥ ⌈δ(G) + 3

2
⌉.

Proof Let S be a ât(G)-set in a graph G, and let v ∈ S. By definition degS(v) − 1 ≥
degV−S(v). By adding degV−S(v) to both sides of this inequality we obtain degV−S(v) − 1 ≤
deg(v) − 1

2
. By adding degS(v) to both sides of this inequality we obtain

deg(v) + 1

2
≤ degS(v).

But degS(v) ≤ |S| − 1 and δ(G) ≤ deg(v). We deduce that
δ(G) + 3

2
≤ |S|. �

Proposition 2.14 For any graph G, a(G) ≤ ât(G) − 1.
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Proof Let S be a ât(G)-set in a graph G, and w ∈ S. Let S′ = S − {w}, and v ∈ S′. It

follows that degS′(v) = degS(v) − deg{w}(v) ≥ degV−S(v) + 1 − deg{w}(v) = degV−S′(v) + 1 −
2deg{w}(v) ≥ degV ′

S
(v), as desired. �

Let Π = [V1, V2] be a partition of the vertices of a graph G such that there are λ(G) edges

between V1 and V2. Π is called singular λ−bipartite if min{|V1|, |V2|} = 1, and non−singular
λ− bipartite if min{|V1|, |V2|} > 1.

Proposition 2.15 Let G be a graph such that every vertex of G has odd degree. If λ(G) < δ(G)

then ât(G) ≤ ⌊n
2
⌋ + 1.

Proof Let Π = [V1, V2] be a partition of the vertices of a graph G such that there are

λ(G) edges between V1 and V2. Without loss of generality assume that |V1| < |V2|. This

implies that |V1| ≤ ⌊n
2
⌋. Since λ(G) < δ(G), we have |Vi| ≥ 2 for i = 1, 2. As a result

Π is non-singular λ-bipartite. If V1 is not an open defensive alliance then there is a vertex

u ∈ V1 such that |N(u) ∩ V1| < |N(u) ∩ V2|. Then Π1 = [V1 − {u}, V2 ∪ {u}] is a partition

of the vertices of G and there are less than λ(G) edges between V1 − {u} and V2 ∪ {u}. But

|Π1| = |Π| − degV2(u) + degV1(u). So |Π1| < |Π|. This contradicts the assumption |Π| = λ(G).

Thus V1 is an open defensive alliance in G and the result follows. �

§3. Open Offensive Alliance

Let G = (V,E) be a graph. A set S ⊆ V is an open offensive alliance if for every vertex

v ∈ ∂(S), |N(v) ∩ S| ≥ |N(v) ∩ (V − S)|. In other words a set S ⊆ V is an open offensive

alliance if for every vertex v ∈ ∂(S), degS(v) ≥ degV−S(v), and this is equivalent to deg(v) ≥
2degV−S(v). A set S ⊆ V is an open strong offensive alliance if for every vertex v ∈ ∂(S),

|N(v) ∩ S| > |N(v) ∩ (V − S)| or, equivalently, dS(v) > dV−S(v), where dS(v) = N(v) ∩ S. An

open (strong) offensive alliance S is called critical if no proper subset of S is an open (strong)

offensive alliance. The open offensive alliance number, aot(G) of G, is the minimum cardinality

of any critical open offensive alliance in G, and the strong open offensive alliance number, âot(G)

of G, is the minimum cardinality of any critical open strong offensive alliance in G.

If S is a critical open offensive alliance of a graph G and |S| = aot(G), then we say that S

is an aot − set of G. The next proposition follows from the definitions.

Proposition 3.1 For all graphs G, ao(G) = âot(G) and aot(G) ≤ âot(G).

Thus we focus on open offensive alliances in G.

Theorem 3.2 For a graph G of order n with ∆(G) ≤ 2, aot(G) = 1.

Proof Suppose S = {v}, where deg(v) = △(G) ≤ 2. Since for every w ∈ ∂S, degS(w) = 1

and degV−S(w) ≤ 1. Therefore, dS(w) ≥ dV−S(w). So the result immediately follows. �

Corollary 3.3 For any cycle Cn and path Pn, ato(Cn) = ato(Pn) = 1.

The following has a straightforward proof and therefore we omit its proof.
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Proposition 3.4

(1) aot(Kn) = ⌊n
2
⌋;

(2) For 1 ≤ m ≤ n, aot(Km,n) = ⌈m
2
⌉;

(3) For any wheel Wn with n 6= 4, aot(Wn) = ⌈n
3
⌉ + 1;

(4) If every vertex of a graph G has odd degree then aot(G) = ao(G).

We next obtain some bounds for the open offensive alliance number of a graph G.

Proposition 3.5 For all graphs G, ato(G) ≥ ⌊δ(G)

2
⌋.

Proof Let S be a aot − set and v ∈ ∂S. By definition for any vertex v of ∂S, dS(v) ≥
dV−S(v). By adding dS(v) to both sides of this inequality we obtain dS(v) ≥ δ(v)

2
. Also it is

clear that ato(G) ≥ dS(v) and δ(v) ≥ δ. This completes the proof. �

Let α(G) denote the vertex covering number of G. That is the minimum cardinality of a

subset S of vertices of G that contains at least one endpoint of every edge.

Proposition 3.6 For all graphs G,

(1) ato(G) ≤ ⌊n
2
⌋;

(2) ato(G) ≤ α(G).

Proof (1) Let f : V −→ {a, b} be a vertex coloring ofG such that the number of edges whose

end vertices have the same color is minimum. Let O = {uv : f(u) = f(v)}, A = {u : f(u) = a}
and B = {u : f(u) = b}. Without loss of generality assume that |B| ≤ |A|. Suppose that B is

not an open offensive alliance in G. So three is a vertex v ∈ A such that degB(v) < degA(v).

Let f ′ : V −→ {a, b} be a vertex coloring of G with f ′(v) 6= f(v) and f ′(x) = f(x) if x 6= v. Let

O′ = {uv : f ′(u) = f ′(v)}, A′ = A−{v} and B′ = B∪{v}. Then |O′| = |O|−degA(v)+degB(v).

But degB(v) < degA(v). We deduce that |O′| < |O|. This is a contradiction since |O| is

minimum. Thus B is an open offensive alliance in G, and so the result follows.

(2) Let S be a α(G)-set and let v ∈ ∂(S). Since S is a vertex covering, degS(v) ≥ degV−S(v) +

1 ≥ degV−S(v). This implies that S is an open offensive alliance, and the result follows. �
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