Open Distance-Pattern Uniform Graphs

Bibin K. Jose
(Department of Mathematics of Union Christian College, Post Box No.5, Aluva-683102, Kerala, India.)
Email: bibinkjose2002@yahoo.com

Abstract

Given an arbitrary non-empty subset M of vertices in a graph $G=(V, E)$, each vertex u in G is associated with the set $f_{M}^{o}(u)=\{d(u, v): v \in M, u \neq v\}$, called its open M-distance-pattern. A graph G is called a Smarandachely uniform k-graph if there exist subsets $M_{1}, M_{2}, \cdots, M_{k}$ for an integer $k \geq 1$ such that $f_{M_{i}}^{o}(u)=f_{M_{j}}^{o}(u)$ and $f_{M_{i}}^{o}(u)=f_{M_{j}}^{o}(v)$ for $1 \leq i, j \leq k$ and $\forall u, v \in V(G)$. Such subsets $M_{1}, M_{2}, \cdots, M_{k}$ are called a k-family of open distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called the Smarandachely odpu-number of G, denoted by $o d_{k}^{S}(G)$. Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its odpu-number $\operatorname{od}_{k}^{S}(G)$ of G is abbreviated to $\operatorname{od}(G)$. In this paper we present several fundamental results on odpu-graphs and odpu-number of a graph.

Key Words: Smarandachely uniform k-graph, open distance-pattern, open distancepattern, uniform graphs, open distance-pattern uniform (odpu-) set, Smarandachely odpunumber, odpu-number.

AMS(2000): 05C12

§1. Introduction

All graphs considered in this paper are finite, simple, undirected and connected. For graph theoretic terminology we refer to Harary [6].

The concept of open distance-pattern and open distance-pattern uniform graphs were suggested by B.D. Acharya. Given an arbitrary non-empty subset M of vertices in a graph $G=(V, E)$, the open M-distance-pattern of a vertex u in G is defined to be the set $f_{M}^{o}(u)=$ $\{d(u, v): v \in M, u \neq v\}$, where $d(x, y)$ denotes the distance between the vertices x and y in G. A graph G is called a Smarandachely uniform k-graph if there exist subsets $M_{1}, M_{2}, \cdots, M_{k}$ for an integer $k \geq 1$ such that $f_{M_{i}}^{o}(u)=f_{M_{j}}^{o}(u)$ and $f_{M_{i}}^{o}(u)=f_{M_{j}}^{o}(v)$ for $1 \leq i, j \leq k$ and $\forall u, v \in V(G)$. Such subsets $M_{1}, M_{2}, \cdots, M_{k}$ are called a k-family of open distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called the Smarandachely odpu-number of G, denoted by $o d_{k}^{S}(G)$. Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its odpu-number $\operatorname{od}_{k}^{S}(G)$ of G is abbreviated to $\operatorname{od}(G)$. We need the following theorem.

[^0]Theorem 1.1([5]) Let G be a graph of order $n, n \geq 4$. Then the following conditions are equivalent.
(i) The graph G is self-centred with radius $r \geq 2$ and for every $u \in V(G)$, there exists exactly one vertex v such that $d(u, v)=r$.
(ii) The graph G is r-decreasing.
(iii) There exists a decomposition of $V(G)$ into pairs $\{u, v\}$ such that $d(u, v)=r(G)>$ $\max (d(u, x), d(x, v))$ for every $x \in V(G)-\{u, v\}$.

In this paper we present several fundamental results on odpu-graphs and odpu-number of a graph G.

§2. Odpu-Sets in Graphs

It is clear that an odpu-set in any nontrivial graph must have at least two vertices. The following theorem gives a basic property of odpu-sets.

Theorem 2.1 In any graph G, if there exists an odpu-set M, then $M \subseteq Z(G)$ where $Z(G)$ is the center of the graph G. Also $M \subseteq Z(G)$ is an odpu-set if and only if $f_{M}^{o}(v)=\{1,2, \ldots, r(G)\}$, for all $v \in V(G)$.
proof Let G have an odpu-set $M \subseteq V(G)$ and let $v \in M$. Suppose $v \notin Z(G)$. Then $e(v)>r(G)$. Hence there exists a vertex $u \in V(G)$ such that $d(u, v)>r(G)$. Since $v \in M$, $f_{M}^{o}(u)$ contains an element, which is greater than $r(G)$. Now let $w \in V(G)$ be such that $e(w)=r(G)$. Then $d(w, v) \leq r(G)$ for all $v \in M$. Hence $f_{M}^{o}(w)$ does not contain an element greater than $r(G)$, so that $f_{M}^{o}(u) \neq f_{M}^{o}(w)$. Thus M is not an odpu-set, which is a contradiction. Hence $M \subseteq Z(G)$.

Now, let $M \subseteq Z(G)$ be an odpu-set. Then $\max f_{M}^{o}(v)=r(G)$. Let $u \in M$ be such that $d(u, v)=r(G)$. Let the shortest $u-v$ path be $\left(u=v_{1}, v_{2}, \cdots, v_{r(G)}=v\right)$. Then v_{1} is adjacent to u. Therefore, $1 \in f_{M}^{o}\left(v_{1}\right)$. Since M is an odpu-set, $1 \in f_{M}^{o}(x)$ for all $x \in V(G)$. Now, $d\left(v_{2}, u\right)=2$, whence $2 \in f_{M}^{o}\left(v_{2}\right)$. Since M is an odpu-set, $2 \in f_{M}^{o}(x)$ for all $x \in V(G)$. Proceeding like this, we get $\{1,2,3, \cdots, r(G)\} \subseteq f_{M}^{o}(x)$ and since $M \subseteq Z(G), \quad f_{M}^{o}(x)=$ $\{1,2,3, \cdots, r(G)\}$ for all $x \in V$. The converse is obvious.

Corollary 2.2 A connected graph G is an odpu-graph if and only if the center $Z(G)$ of G is an odpu-set.

Proof Let G be an odpu-graph with an odpu-set M. Then $f_{M}^{o}(v)=\{1,2, \ldots, r(G)\}$ for all $v \in V(G)$. Since $f_{Z(G)}^{o}(v) \supseteq f_{M}^{o}(v)$ and $d(u, v) \leq r(G)$ for every $v \in V$ and $u \in Z(G)$, it follows that $Z(G)$ is an odpu set of G. The converse is obvious.

Corollary 2.3 Every self-centered graph is an odpu-graph.

Proof Let G be a self-centered graph. Take $M=V(G)$. Since G is self-centered, $e(v)=$ $r(G)$ for all $v \in V(G)$. Therefore, $f_{M}^{o}(v)=\{1,2, \cdots, r(G)\}$ for all $v \in V(G)$, so that M is an odpu-set for G.

Remark 2.4 The converse of Corollary 2.3 is not true. For example the graph $K_{2}+\overline{K_{2}}$, is not self-centered but it is an odpu-graph. Moreover, there exist self-centered graphs having a proper subset of $Z(G)=V(G)$ as an odpu-set.

Theorem 2.5 If G is an odpu-graph with $n \geq 3$, then $\delta(G) \geq 2$ and G is 2-connected.
Proof Let G be an odpu-graph with $n \geq 3$ and let M be an odpu-set of G. If G has a pendant vertex v, it follows from Theorem 2.1 that $v \notin M$. Also, v is adjacent to exactly one vertex $w \in V(G)$. Since M is an odpu-set, $\max f_{M}^{o}(w)=r(G)$. Therefore, there exists $u \in M$ such that $d(u, w)=r(G)$. Now $d(u, v)=r(G)+1$ and $f_{M}^{o}(v)$ contains $r(G)+1$. Hence $f_{M}^{o}(v) \neq f_{M}^{o}(w)$, a contradiction. Thus $\delta(G) \geq 2$.

Now suppose G is not 2-connected. Let B_{1} and B_{2} be blocks in G such that $V\left(B_{1}\right) \cap$ $V\left(B_{2}\right)=\{u\}$. Since, the center of a graph lies in a block, we may assume that the center $Z(G) \subseteq B_{1}$. Let $v \in B_{2}$ be such that $u v \in E(G)$. Then there exists a vertex $w \in M$ such that $d(u, w)=r(G)$ and $d(v, w)=r(G)+1$, so that $r(G)+1 \in f_{M}^{o}(u)$, which is a contradiction. Hence G is 2-connected.

Corollary 2.6 A tree T has an odpu-set M if and only if T is isomorphic to P_{2}.
Corollary 2.7 If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.
Corollary 2.8 A block graph G is an odpu-graph if and only if G is complete.
Corollary 2.9 In any graph G, if there exists an odpu-set M, then every subset M^{\prime} of $Z(G)$ such that $M \subseteq M^{\prime}$ is also an odpu-set.

Thus Corollary 2.9 shows that in a limited sense the property of subsets of $V(G)$ being odpu-sets is super-hereditary within $Z(G)$. The next remark gives an algorithm to recognize odpu-graphs.

Remark 2.10 Let G be a finite simple connected graph. The the following algorithm recognizes odpu-graphs.

Step-1: Determine the center of the graph G.
Step-2: Generate the $c \times n$ distance matrix $D(G)$ of G where $c=|Z(G)|$.
Step-3: Check whether each column C_{i} has the elements $1,2, \ldots, r$.
Step-4: If then, G is an odpu-graph.
Or else G is not an odpu-graph.
The above algorithm is efficient since we have polynomial time algorithm to determine $Z(G)$ and to compute the matrix $D(G)$.

Theorem 2.11 Every odpu-graph G satisfies, $r(G) \leq d(G) \leq r(G)+1$. Further for any positive integer r, there exists an odpu-graph with $r(G)=r$ and $d(G)=r+1$.

Proof Let G be an odpu-graph. Since $r(G) \leq d(G)$ for any graph G, it is enough to prove that $d(G) \leq r(G)+1$. If G is a self-centered graph, then $r(G)=d(G)$. Assume G is not self-centered and let u and v be two antipodal vertices of G. Since G is an odpu-graph, $Z(G)$ is an odpu-set and hence there exist vertices $u^{\prime}, v^{\prime} \in Z(G)$ such that $d\left(u, u^{\prime}\right)=1$ and $d\left(v, v^{\prime}\right)=1$. Now, G is not self-centered, and $d(u, v)=d$, implies $u, v \notin Z(G)$. If $d>r+1$; since $d\left(u, u^{\prime}\right)=d\left(v, v^{\prime}\right)=1$, the only possibility is $d\left(u^{\prime}, v^{\prime}\right)=r$, which implies $d\left(u, v^{\prime}\right)=r+1$. But $v^{\prime} \in Z(G)$ and hence $r+1 \in f_{M}^{o}(u)$, which is not possible. Hence $d(u, v)=d \leqslant r+1$ and the result follows.

Now, let r be any positive integer. For $r=1$ take $G=K_{2}+\bar{K}_{n}, n \geqslant 2$. For $r \geqslant 2$, let G be the graph obtained from $C_{2 r}$ by adding a vertex v_{e} corresponding to each edge e in $C_{2 r}$ and joining v_{e} to the end vertices of e. Then, it is easy to check that an odpu-set of the resulting graph is $V\left(C_{2 r}\right)$.

However, it should be noted that $d=r+1$ is not a sufficient condition for the graph to be an odpu-graph. For the graph G consisting of the cycle C_{r} with exactly one pendent edge at one of its vertices, $d=r+1$ but G is not an odpu-graph.

Remark 2.12 Theorem 2.11 states that there are only two classes of odpu-graphs, those which are self-centered or those for which $d(G)=r(G)+1$. Hence, the problem of characterizing odpu-graphs reduces to the problem of characterizing odpu-graphs with $d(G)=r(G)+1$.

The following theorem gives a complete characterization of odpu-graphs with radius one.

Theorem 2.13 A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a subset $M \subset V(G)$ with $|M| \geq 2$ such that the induced subgraph $\langle M\rangle$ is complete, $\langle V-M\rangle$ is not complete and any vertex in $V-M$ is adjacent to all the vertices of M.

Proof Assume that G is an odpu-graph with radius $r=1$ and diameter $d=2$. Then, $f_{M}^{o}(v)=\{1\}$ for all $v \in V(G)$. If $\langle M\rangle$ is not complete, then there exist two vertices $u, v \in M$ such that $d(u, v) \geq 2$. Hence, both $f_{M}^{o}(u)$ and $f_{M}^{o}(v)$ contains a number greater than 1 , which is not possible. Therefore, $\langle M\rangle$ is complete. Next, if $x \in V-M$ then, since $f_{M}^{o}(x)=\{1\}, x$ is adjacent to all the vertices of $\langle M\rangle$. Now, if $\langle V-M\rangle$ is complete, then since $\langle M\rangle$ is complete the above argument implies that G is complete, whence diameter of G would be one, a contradiction. Thus, $\langle V-M\rangle$ is not complete.

Conversely assume $\langle M\rangle$ is complete with $|M| \geq 2,\langle V-M\rangle$ is not complete and every vertex of $\langle V-M\rangle$ is adjacent to all the vertices in $\langle M\rangle$. Then, clearly, the diameter of G is two and radius of G is one. Also, since $|M| \geq 2$, there exist at least two universal vertices in M (i.e. Each is adjacent to every other vertices in $M)$. Therefore $f_{M}^{o}(v)=\{1\}$ for every $v \in V(G)$. Hence G must be an odpu-graph with M as an odpu-set.

Theorem 2.14 Let G be a graph of order $n \geq 3$. Then the following are equivalent.
(i) Every k-element subset of $V(G)$ forms an odpu-set, where $2 \leq k \leq n$.
(ii) Every 2-element subset of $V(G)$ forms an odpu-set.
(iii) G is complete.

Proof Trivially (i) implies (ii)
If every 2-element subset M of $V(G)$ forms an odpu-set, then $f_{M}^{o}(v)=\{1\}$ for all $v \in V(G)$ and hence G is complete.

Obviously (iii) implies (i).

Theorem 2.15 Any graph G (may or may not be connected) with $\delta(G) \geq 1$ and having no vertex of full-degree can be embedded into an odpu-graph H with G as an induced subgraph of H of order $|V(G)|+2$ such that $V(G)$ is an odpu-set of the graph H.

Proof Let G be a graph with $\delta(G) \geq 1$ and having no vertex of full-degree. Let $u, v \in V(G)$ be any two adjacent vertices and let $a, b \notin V(G)$. Let H be the graph obtained by joining a to b and also, joining a to all vertices of G except u and joining the vertex b to all vertices of G except v. Let $M=V(G) \subset V(H)$. Since a is adjacent to all the vertices except u and $d(a, u)=2$, implies $f_{M}^{o}(a)=\{1,2\}$. Similarly $f_{M}^{o}(b)=\{1,2\}$. Since u is adjacent to $v, 1 \in f_{M}^{o}(u)$. Since u does not have full degree, there exists a vertex x, which is not adjacent to u. But (u, b, x) is a path in H and hence $d(u, x)=2$ in H for all such $x \in V(G)$. Therefore $f_{M}^{o}(u)=\{1,2\}$. Similarly $f_{M}^{o}(v)=\{1,2\}$. Now let $w \in V(G), w \neq u, v$. Now since no vertex w is an isolated vertex and w does not have full-degree, there exist vertices x and y in $V(G)$ such that $w x \in E(H)$ and $w y \notin E(H)$. But then, there exists a path (w, a, y) or (w, b, y) with length 2 in H. Also every vertex which is not adjacent to w is at a distance 2 in H. Therefore $f_{M}^{o}(w)=\{1,2\}$. Hence $f_{M}^{o}(x)=\{1,2\}$ for all $x \in V(H)$. Hence H is an odpu-graph and $V(G)$ is an odpu-set of H.

Remark 2.16 Bollobás [1] proved that almost all graphs have diameter 2 and almost no graph has a node of full degree. Hence almost no graph has radius one. Since $r(G) \leq d(G)$, almost all graphs have $r(G)=d(G)=2$, that is, almost all graphs are self-centered with diameter 2 . Since self-centered graphs are odpu-graphs, the following corollary is immediate.

Corollary 2.17 Almost all graphs are odpu-graphs.

§3. Odpu-Number of a Graph

As we have observed in section 2 , if G has an odpu-set M then $M \subseteq Z(G)$ and if $M \subseteq$ $M^{\prime} \subseteq Z(G)$, then M^{\prime} is also an odpu-set. This motivates the definition of odpu-number of an odpu-graph.

Definition 3.1 The Odpu-number of a graph G, denoted by $\operatorname{od}(G)$, is the minimum cardinality of an odpu-set in G.

In this section we characterize odpu-graphs which have odpu-number 2 and also prove that
there is no graph with odpu-number 3 and for any positive integer $k \neq 1,3$, there exists a graph with odpu-number k. We also present several embedding theorems. Clearly,

$$
\begin{equation*}
2 \leqslant o d(G) \leqslant|Z(G)| \text { for any odpu - graph } G \tag{3.1}
\end{equation*}
$$

Since the upper bound for $|Z(G)|$ is $|V(G)|$, the above inequality becomes,

$$
\begin{equation*}
2 \leqslant o d(G) \leqslant|V(G)| \tag{3.2}
\end{equation*}
$$

The next theorem gives a characterization of graphs attaining the lower bound in the above inequality.

Theorem 3.2 For any graph G, od $(G)=2$ if and only if there exist at least two vertices $x, y \in V(G)$ such that $d(x)=d(y)=|V(G)|-1$.

Proof Suppose that the graph G has an odpu-set M with $|M|=2$. Let $M=\{x, y\}$. We claim that $d(x)=d(y)=n-1$, where $n=|V(G)|$. If not, there are two possibilities.

Case 1. $d(x)=n-1$ and $d(y)<n-1$.
Since $d(x)=n-1, x$ is adjacent to y. Therefore, $f_{M}^{o}(x)=\{1\}$. Also, since $d(y)<n-1$, it follows that $2 \in f_{M}^{o}(w)$ for any vertex w not adjacent to v, which is a contradiction.

Case 2. $\quad d(x)<n-1$ and $d(y)<n-1$.
If $x y \in E(G)$, then $f_{M}^{o}(x)=f_{M}^{o}(y)=\{1\}$ and for any vertex w not adjacent to u, $f_{M}^{o}(w) \neq\{1\}$.

If $x y \notin E(G)$, then $1 \notin f_{M}^{o}(x)$ and for any vertex w which is adjacent to $x, 1 \in f_{M}^{o}(w)$, which is a contradiction. Hence $d(x)=d(y)=n-1$.

Conversely, let G be a graph with $u, v \in V(G)$ such that $d(u)=d(v)=n-1$. Let $M=\{u, v\}$. Then $f_{M}^{o}(x)=\{1\}$ for all $x \in V(G)$ and hence M is an odpu-set with $|M|=2$.

Corollary 3.3 For any odpu-graph G if $|M|=2$, then $\langle M\rangle$ is isomorphic to K_{2}.
Corollary $3.4 \operatorname{od}\left(K_{n}\right)=2$ for all $n \geqslant 2$.
Corollary 3.5 If a (p, q)-graph has an odpu-set M with odpu-number 2 , then $2 p-3 \leq q \leq$ $\frac{p(p-1)}{2}$.

Proof By Theorem 3.2, there exist at least two vertices having degree $p-1$ and hence $q \geq 2 p-3$. The other inequality is trivial.

Theorem 3.6 There is no graph with odpu-number three.
Proof Suppose there exists a graph G with $\operatorname{od}(G)=3$ and let $M=\{x, y, z\}$ be an odpu-set in G. Since G is connected, $1 \in f_{M}^{o}(x) \cap f_{M}^{o}(y) \cap f_{M}^{o}(z)$.

We claim that x, y, z form a triangle in G. Since $1 \in f_{M}^{o}(x)$, and $1 \in f_{M}^{0}(z)$, we may assume that $x y, y z \in E(G)$. Now if $x z \notin E(G)$, then $d(x, z)=2$ and hence $2 \in f_{M}^{o}(x) \cap f_{M}^{0}(Z)$ and $f_{M}^{o}(y)=\{1\}$, which is not possible. Thus $x z \in E(G)$ and x, y, z forms a triangle in G.

Now $f_{M}^{o}(w)=\{1\}$ for any $w \in V(G)-M$ and hence w is adjacent to all the vertices of M. Thus G is complete and $\operatorname{od}(G)=2$, which is again a contradiction. Hence there is no graph G with $\operatorname{od}(G)=3$.

Next we prove that the existence of graph with odpu-numbers $k \neq 1,3$. We need the following definition.

Definition 3.7 The shadow graph $S(G)$ of a graph G is obtained from G by adding for each vertex v of G a new vertex v^{\prime}, called the shadow vertex of v, and joining v^{\prime} to all the neighbors of v in G.

Theorem 3.8 For every positive integer $k \neq 1,3$, there exists a graph G with odpu-number k.
Proof Clearly $\operatorname{od}\left(P_{2}\right)=2$ and $\operatorname{od}\left(C_{4}\right)=4$. Now we will prove that the shadow graph of any complete graph $K_{n}, n \geq 3$ is an odpu-graph with odpu-number $n+2$.

Let the vertices of the complete graph K_{n} be $v_{1}, v_{2}, \ldots, v_{n}$ and the corresponding shadow vertices be $v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n}^{\prime}$. Since the shadow graph $S\left(K_{n}\right)$ of K_{n} is self-centered with radius 2 and $n \geq 3$, by Corollary 2.3, it is an odpu-graph. Let M be the smallest odpu-set of $S\left(K_{n}\right)$. We establish that $|M|=n+2$ in the following three steps.

First, we show $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n}^{\prime}\right\} \subseteq M$. If there is a shadow vertex $v_{i}^{\prime} \notin M$, then $2 \notin f_{M}^{o}\left(v_{i}\right)$ since v_{i} is adjacent to all the vertices of $S\left(K_{n}\right)$ other than v_{i}^{\prime}, implying thereby that M is not an odpu-set, contrary to our assumption. Thus, the claim holds.

Now, we show that $M=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ is not an odpu-set of $S\left(K_{n}\right)$. Note that $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ are pairwise non-adjacent and if $M=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, then $1 \notin f_{M}^{o}\left(v_{i}^{\prime}\right)$ for all $v_{i}^{\prime} \in M$. But $1 \in f_{M}^{o}\left(v_{i}\right), \quad 1 \leq i \leq n$, and hence M is not an odpu-set.

From the above two steps, we conclude that $|M|>n$. Now, $M=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\} \cup$ $\left\{v_{i}\right\}$ where v_{i} is any vertex of K_{n} is not an odpu-set. Further, since all the shadow vertices are pairwise nonadjacent and v_{i} is not adjacent to $v_{i}^{\prime}, 1 \notin f_{M}^{o}\left(v_{i}^{\prime}\right)$. Hence $|M|>n+1$. Let $v_{i}, v_{j} \in V\left(K_{n}\right)$ be any two vertices of K_{n} and let $M=\left\{v_{i}, v_{j}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. We prove that M is an odpu-set and thereby establish that $\operatorname{od}(G)=n+2$. Now, $d\left(v_{i}, v_{j}\right)=1$ and $d\left(v_{i}, v_{i}^{\prime}\right)=d\left(v_{j}, v_{j}^{\prime}\right)=2$, so that $f_{M}^{o}\left(v_{i}\right)=f_{M}^{o}\left(v_{j}\right)=\{1,2\}$. Also, for any vertex $v_{k} \in V\left(K_{n}\right)$, $d\left(v_{k}, v_{i}\right)=1$ and $d\left(v_{k}, v_{k}^{\prime}\right)=2$, so that $f_{M}^{o}\left(v_{k}\right)=\{1,2\}$. Again, $d\left(v_{i}^{\prime}, v_{j}\right)=d\left(v_{j}^{\prime}, v_{i}\right)=1$ and for any shadow vertex $v_{k}^{\prime} \in V\left(S\left(K_{n}\right)\right), d\left(v_{k}^{\prime}, v_{i}\right)=1$ and since all the shadow vertices are pairwise non-adjacent, $f_{M}^{o}\left(v_{k}^{\prime}\right)=\{1,2\}$. Thus, M is an odpu-set and $\operatorname{od}(G)=n+2$.

Remark 3.9 We have proved that 3 cannot be the odpu number of any graph. Hence, by the above theorem, for an odpu-graph the numbers 1 and 3 are the only two numbers forbidden as odpu-numbers of any graph.

Theorem $3.10 \quad \operatorname{od}\left(C_{2 k+1}\right)=2 k$.
Proof Let $C_{2 k+1}=\left(v_{1}, v_{2}, \ldots, v_{2 k+1}, v_{1}\right)$. Clearly $M=\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}$ is an odpu-set of $C_{2 k+1}$. Now, let M be any odpu-set of $C_{2 k+1}$. Then, there exists a vertex $v_{i} \in V\left(C_{2 k+1}\right)$ such that $v_{i} \notin M$. Without loss of generality, assume that $v_{i}=v_{2 k+1}$. Then, since $1 \in f_{M}^{o}\left(v_{2 k+1}\right)$, either $v_{2 k} \in M$ or $v_{1} \in M$ or both $v_{1}, v_{2 k} \in M$. Without loss of generality, let $v_{1} \in M$. Since
$d\left(v_{1}, v_{2 k+1}\right)=1$ and $v_{2 k+1} \notin M$, and v_{2} is the only element other than $v_{2 k+1}$ at a distance 1 from v_{1}, we see that $v_{2} \in M$. Now, $d\left(v_{2}, v_{2 k+1}\right)=2$ and $v_{2 k+1} \notin M$, and v_{4} is the only element other than $v_{2 k+1}$ at a distance 2 ; this implies $v_{4} \in M$. Proceeding in this manner, we get $v_{2}, v_{4} \ldots, v_{2 k} \in M$. Now since $d\left(v_{2 k}, v_{2 k+1}\right)=1$ and $v_{2 k+1} \notin M$, and $v_{2 k-1}$ is the only element other than $v_{2 k+1}$ at a distance 1 from $v_{2 k}$, we get $v_{2 k-1} \in M$. Next, since $d\left(v_{2 k-1}, v_{2 k+1}\right)=2$ and $v_{2 k+1} \notin M$, and $v_{2 k-3}$ is the only element other than $v_{2 k+1}$ at a distance 2 from $v_{2 k-1}$, we get $v_{2 k-3} \in M$. Proceeding like this, we get $M=\left\{v_{1}, v_{2}, \ldots, v_{2 k}\right\}$. Hence $\operatorname{od}\left(C_{2 k+1}\right)=2 k$.

Definition 3.11([2]) A graph is an r-decreasing graph if $r(G-v)=r(G)-1$ for all $v \in V(G)$.
We now proceed to characterize odpu-graphs G with $\operatorname{od}(G)=|V(G)|$. We need the following lemma.

Lemma 3.12 Let G be a self-centered graph with $r(G) \geq 2$. Then for each $u \in V(G)$, there exist at least two vertices in every $i^{\text {th }}$ neighborhood $N_{i}(u)=\{v \in V(G): d(u, v)=i\}$ of $u, i=1,2, \ldots, r-1$.

Proof Let G be a self-centered graph and let u be any arbitrary vertex of G. If possible, let for some $i, 1 \leq i \leq r-1, N_{i}(u)$ contains exactly one vertex, say w. Then, since $e(w)=r$, there exists $x \in V(G)$ such that $d(x, w)=r$.

If $x \in N_{j}(u)$ for some $j>i$, then $d(u, x)>r$, which is a contradiction. Again if $x \in N_{j}(u)$ for some $j<i$, then $d(x, w)=r<i \leq r-1$, which is again a contradiction. Hence $N_{i}(u)$ contains at least two vertices.

Theorem 3.13 Let G be a graph of order $n, n \geq 4$. Then the following conditions are equivalent.
(i) $\operatorname{od}(G)=n$.
(ii) the graph G is self-centered with radius $r \geq 2$ and for every $u \in V(G)$, there exists exactly one vertex v such that $d(u, v)=r$.
(iii) the graph G is r-decreasing.
(iv) there exists a decomposition of $V(G)$ into pairs $\{u, v\}$ such that $d(u, v)=r(G)>$ $\max (d(u, x), d(x, v))$ for every $x \in V(G)-\{u, v\}$.

Proof Let G be a graph of order $n, n \geq 4$. The equivalence of $(i i),(i i i)$ and $(i v)$ follows from Theorem 1.1. We now prove that (i) and (ii) are equivalent.
$(i) \Rightarrow(i i)$
Let G be a graph with $\operatorname{od}(G)=n=|V(G)|$. Hence, $e(u)=r$ for all $u \in V(G)$ so that G is self-centered. Now, we show that for every $u \in V(G)$, there exists exactly one vertex $v \in V(G)$ such that $d(u, v)=r$.

First, we show that for some vertex $u_{0} \in V(G)$, there exists exactly one vertex $v_{0} \in V(G)$ such that $d\left(u_{o}, v_{0}\right)=r$. Suppose for every vertex $x \in V(G)$, there exist at least two vertices x_{1} and x_{2} in $V(G)$ such that $d\left(x, x_{1}\right)=r$ and $d\left(x, x_{2}\right)=r$. Let $M=V(G)-\left\{x_{1}\right\}$. Then, since $d\left(x, x_{2}\right)=r, f_{M}^{o}(x)=\{1,2, \ldots, r\}$. Further, since $d\left(x, x_{1}\right)=r, f_{M}^{o}\left(x_{1}\right)=\{1,2, \ldots, r\}$. Also, since $d\left(x, x_{2}\right)=r$, and by Lemma 3.12, $f_{M}^{o}\left(x_{2}\right)=\{1,2, \cdots, r\}$. Let y be any vertex other than
x, x_{1} and x_{2}. Let $1 \leqslant k \leqslant r$, and if $d(y, x)=k$, then by Lemma 3.12 and by assumption, there exists another vertex $z \in M$ such that $d(y, z)=k$. Therefore, $f_{M}^{o}(y)=\{1,2, \ldots, r\}$. Thus $M=V(G)-\left\{x_{1}\right\}$ is an odpu-set for G, which is a contradiction to the hypothesis. Thus, there exists a vertex $u_{0} \in V(G)$ such that there is exactly one vertex $v_{0} \in V(G)$ with $d\left(u_{0}, v_{0}\right)=r$. Next, we claim that u_{0} is the unique vertex for v_{0} such that $d\left(u_{0}, v_{0}\right)=r$. Suppose there is a vertex $w_{0} \neq u_{0}$ with $d\left(w_{0}, v_{0}\right)=r$. Let $M=V(G)-\left\{u_{0}\right\}$. Then, $d\left(u_{0}, v_{0}\right)=r$ implies $f_{M}^{o}\left(u_{0}\right)=\{1,2, \ldots, r\}$ and $d\left(v_{0}, w_{0}\right)=r$ imply $f_{M}^{o}\left(v_{0}\right)=\{1,2, \ldots, r\}$. Also, since $d\left(v_{0}, w_{0}\right)=r$, by Lemma 3.12 , it follows that $f_{M}^{o}\left(w_{0}\right)=\{1,2, \ldots, r\}$. Now let $x \in V(G)-\left\{u_{0}, v_{0}, w_{0}\right\}$. Since $d\left(x, u_{0}\right)<r$, we get $f_{M}^{o}(x)=\{1,2, \ldots, r\}$. Hence, $M=V(G)-\left\{u_{0}\right\}$ is an odpu-set for G, which is a contradiction. Therefore, for the vertex v_{0}, u_{0} is the unique vertex such that $d\left(u_{0}, v_{0}\right)=r$.

Next, we claim that there is some vertex $u_{1} \in V(G)-\left\{u_{0}, v_{0}\right\}$ such that there is exactly one vertex $v_{1} \in V(G)$ at a distance r from u_{1}. If for every vertex $u_{1} \in V(G)-\left\{u_{0}, v_{0}\right\}$, there are at least two vertices v_{1} and w_{1} in $V(G)$ at a distance r from u_{1}, then proceeding as above, we can prove that $M=V(G)-\left\{v_{1}\right\}$ is an odpu-set of G, a contradiction. Therefore, v_{1} is the only vertex at a distance r from u_{1}. Continuing the above procedure we conclude that for every vertex $u \in V(G)$ there exists exactly one vertex $v \in V(G)$ at a distance r from u and for the vertex v, u is the only vertex at a distance r. Thus (i) implies (ii).

Now, suppose (ii) holds. Then M is the unique odpu-set of G and hence $\operatorname{od}(G)=n$.
Corollary 3.14 If G is an odpu-graph with $\operatorname{od}(G)=|V(G)|=n$, then G is self-centered and n is even.

Corollary 3.15 If G is an odpu-graph with od $(G)=|V(G)|=n$ then $r(G) \geq 3$ and u_{1}, u_{2} are different vertices of G, then, $N\left(u_{1}\right) \neq N\left(u_{2}\right)$.

Proof If $N\left(u_{1}\right)=N\left(u_{2}\right)$, then $d\left(u_{1}, v_{1}\right)=d\left(u_{2}, v_{1}\right)$, which contradicts Theorem 3.13.
Corollary 3.16 The odpu-number od $(G)=|V(G)|$ for the n-dimensional cube and for even cycle $C_{2 n}$.

Corollary 3.17 Let G be a graph with $r(G)=2$. Then $\operatorname{od}(G)=|V(G)|$ if and only if G is isomorphic to $K_{2,2, \ldots, 2}$.

Proof If $G=K_{2,2, \ldots, 2}$, then $r(G)=2$ and G is self-centered and by Theorem 3.13, $\operatorname{od}(G)=|V(G)|=2 n$.

Conversely, let G be a graph with $r(G)=2$. Then G is self-centered and it follows from Theorem 3.13 that for each vertex, there exists exactly one vertex at a distance 2. Hence $G \cong K_{2,2, \ldots, 2}$.

Problem 3.1 Characterize odpu-graphs for which od $(G)=|Z(G)|$.
Theorem 3.18 If a graph G has odpu-number 4 , then $r(G)=2$.
Proof Let G be an odpu-graph with odpu-number 4. Let $M=\{u, v, x, y\}$ be an odpu-set of G. If $r(G)=1$, then $f_{M}^{o}(x)=\{1\}$ for all $x \in V(G)$. Therefore, $\langle M\rangle$ is complete. Hence, any two elements of M forms an odpu-set of G which implies $o d(G)=2$, which is a contradiction.

Hence $r(G) \geq 2$.
Since $r(G) \geq 2$, none of the vertices in M is adjacent to all the other vertices in M and $\langle M\rangle$ has no isolated vertex. Hence $\langle M\rangle=P_{4}$ or C_{4} or $2 K_{2}$.

If $\langle M\rangle=P_{4}$ or C_{4} then the radius of $\langle M\rangle$ is 2 . Hence, there exists a vertex v in M such that $f_{M}^{o}(v)=\{1,2\}$ so that $r(G)=2$.

Suppose $\langle M\rangle=2 P_{2}$ and let $E(\langle M\rangle)=\{u v, x y\}$. Since $|M|=4, r(G) \leq 3$. If $r(G)=3$, then $3 \in f_{M}^{o}(x)$ and $3 \in f_{M}^{o}(u)$. Hence, there exists a vertex $w \notin M$ such that $x w, u w \in E(G)$. Hence, $d(x, w)=d(u, w)=1$. Also, $d(y, w)=d(v, w)=2$. Therefore, $3 \notin f_{M}^{o}(w)$, which is a contradiction. Thus, $r(G)=2$.

A set S of vertices in a graph $G=(V, E)$ is called a dominating set if every vertex of G is either in S or is adjacent to a vertex in S; further, if $\langle S\rangle$ is isolate-free then S is called a total dominating set of G (see Haynes et al[7]). The next result establishes the relation between odpu-sets and total dominating sets in an odpu-graph.

Theorem 3.19 For any odpu-graph G, every odpu-set in G is a total dominating set of G.
Proof Let M be an odpu-set of the graph G. Since $1 \in f_{M}^{o}(u)$, for all $u \in V(G)$, for any vertex $u \in V(G)$ there exists a vertex $v \in M$ such that $u v \in E(G)$. Hence, M is a total dominating set of G.

Recall that the total domination number $\gamma_{t}(G)$ of a graph G is the least cardinality of a total dominating set in G.

Corollary 3.20 For any odpu-graph $G, \gamma_{t}(G) \leqslant \operatorname{od}(G)$.
Problem 3.2 Characterize odpu-graphs G such that $\gamma_{t}(G)=\operatorname{od}(G)$.
Let H be a graph with vertex set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let $G_{1}, G_{2}, \ldots, G_{n}$ be a set of vertex disjoint graphs. Then the graph obtained from H by replacing each vertex x_{i} of H by the graph G_{i} and joining all the vertices of G_{i} to all the vertices of G_{j} if and only if $x_{i} x_{j} \in E(H)$, is denoted as $H\left[G_{1}, G_{2}, \ldots, G_{n}\right]$.

Theorem 3.21 Let H be a connected odpu-graph of order $n \geq 2$ and radius $r \geq 2$. Let $K=H\left[G_{1}, G_{2}, \ldots, G_{n}\right]$. Then $\operatorname{od}(H)=\operatorname{od}(K)$.

Proof Let $V(H)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let G_{i} be the graph replaced at the vertex x_{i} in H. It follows from the definition of K that if $\left(x_{i 1}, x_{i 2}, \ldots, x_{i r}\right)$ is a shortest path in H, then $\left(x_{i 1, j 1}, x_{i 2, j 2}, \ldots, x_{i r, j r}\right)$ is a shortest path in K where $x_{i k, j k}$ is an arbitrary vertex in $G_{i k}$. Hence $M \subseteq V(H)$ is odpu-set in H if and only if the set $M_{1} \subseteq V(K)$, where M_{1} has exactly one vertex from G_{i} if and only if $x_{i} \in M$, is an odpu-set for K. Hence $\operatorname{od}(H)=\operatorname{od}(K)$.

Corollary 3.22 A graph G with radius $r(G) \geq 2$ is an odpu-graph if and only if its shadow graph is an odpu-graph.

Theorem 3.23 Given a positive integer $n \neq 1,3$, any graph G can be embedded as an induced subgraph into an odpu-graph K with odpu-number n.

Proof If $n=2$, then $K=C_{3}\left[G, K_{1}, K_{1}\right]$ is an odpu-graph with $\operatorname{od}(K)=\operatorname{od}\left(C_{3}\right)=2$ and G is an induced subgraph of K. Suppose $n \geq 4$. Then by Theorem 3.8, there exists an odpu-graph H with $\operatorname{od}(H)=n$. Now by Theorem 3.21, $K=H\left[G, K_{1}, K_{1}, \cdots, K_{1}\right]$ is an odpu-graph with $o d(K)=o d(H)=n$ and G is an induced subgraph of K.

Remark 3.24 If G and K are as in Theorem 3.23, we have
(1) $\omega(H)=\omega(G)+2$,
(2) $\chi(H)=\chi(G)+2$,
(3) $\quad \beta_{1}(H)=\beta_{1}(G)+1$ and
(4) $\quad \beta_{0}(H)=\beta_{0}(G)$
where $\omega(G)$ is the clique number, $\chi(G)$ is the chromatic number, $\beta_{1}(G)$ is the matching number and $\beta_{0}(G)$ is the independence number of G. Since finding these parameters are NP-complete for graphs, finding these four parameters for an odpu-graph is also NP-complete.

§4. Bipartite Odpu-Graphs

In this section we characterize complete multipartite odpu-graphs and bipartite odpu-graphs with odpu-number 2 and 4 . Further we prove that there are no bipartite graph with odpunumber 5 .

Theorem 4.1 The complete n-partite graph $K_{a_{1}, a_{2}, \cdots, a_{n}}$ is an odpu-graph if and only if either $a_{i}=a_{j}=1$ for some i and j or $a_{1}, a_{2}, a_{3}, \cdots a_{n} \geq 2$. Hence od $\left(K_{a_{1}, a_{2}, \cdots, a_{n}}\right)=2$ or $2 n$.

Proof Suppose $G=K_{a_{1}, a_{2}, \cdots, a_{n}}$ is an odpu-graph. If $a_{1}=1$ for exactly one i, then $\left|Z\left(K_{a_{1}, a_{2}, \cdots, a_{n}}\right)\right|=1$. Hence G is not an odpu-graph, which is a contradiction.

Conversely assume, either $a_{i}=a_{j}=1$ for some i and j or $a_{1}, a_{2}, a_{3}, \cdots a_{n} \geq 2$. If $a_{i}=a_{j}=$ 1 for some i and j, then there exist two vertices of full degree and hence G is an odpu-graph with odpu-number 2 . If $a_{1}, a_{2}, a_{3}, \cdots a_{n} \geq 2$, then for any set M which contains exactly two vertices from each partite set, we have $f_{M}^{o}(v)=\{1,2\}$ for all $v \in V(G)$ ane hence M is an odpu-set with $|M|=2 n$. Further if M is any subset of $V(G)$ with $|M|<2 n$, there exists a partite set V_{i} such that $\left|M \cap V_{i}\right| \leq 1$ and $f_{M}^{0}(v)=\{1\}$ for some $v \in V_{i}$ and M is not an odpu-set. Hence $o d(G)=2 n$.

Theorem 4.2 Let G be a bipartite odpu-graph. Then od $(G)=2$ if and only if G is isomorphic to P_{2}.

Proof Let G be a bipartite odpu-graph with bipartition (X, Y). Let $\operatorname{od}(G)=2$. Then, by Theorem 3.2, there exist at least two vertices of degree $n-1$. Hence $|X|=|Y|=1$ and G is isomorphic to P_{2}. The converse is obvious.

Theorem 4.3 A bipartite odpu-graph G with bipartition (X, Y) has odpu-number 4 if and only if the set X has at least two vertices of degree $|Y|$ and the set Y has at least two vertices of degree $|X|$.

Proof Suppose $\operatorname{od}(G)=4$. Let M be an odpu-set of G with $|M|=4$. Then, by Theorem 3.18, $r(G)=2$ and hence $f_{M}^{o}(x)=\{1,2\}$ for all $x \in V(G)$.

First, we show that $|M \cap X|=|M \cap Y|=2$. If $|M \cap X|=4$, then $1 \notin f_{M}^{o}(v)$ for all $v \in M$. If $|M \cap X|=3$ and $|M \cap Y|=1$ then $2 \notin f_{M}^{o}(v)$ for the vertex $v \in M \cap Y$. Hence it follows that $|M \cap X|=|M \cap Y|=2$. Let $M \cap X=\{u, v\}$ and $M \cap Y=\{x, y\}$. Since $f_{M}^{0}(w)=\{1,2\}$ for all $w \in V$, it follows that every vertex in X is adjacent to both x and y and every vertex in Y is adjacent to both u and v. Hence, $\operatorname{deg}(u)=\operatorname{deg}(v)=|Y|$ and $\operatorname{deg}(x)=\operatorname{deg}(y)=|X|$.

Conversely, suppose $u, v \in X, x, y \in Y, \operatorname{deg}(u)=\operatorname{deg}(v)=|Y|$ and $\operatorname{deg}(x)=\operatorname{deg}(y)=|X|$. Let $M=\{u, v, x, y$,$\} . Clearly f_{M}^{0}(w)=\{1,2\}$ for all $w \in V$. Hence M is an odpu-set. Also, since there exists no full degree vertex in G, by Theorem 3.2 the odpu-number cannot be equal to 2 . Also, since 3 is not the odpu-number of any graph. Hence the odpu-number of G is 4 .

Theorem 4.4 The number 5 cannot be the odpu-number of a bipartite graph.
Proof Suppose there exists a bipartite graph G with bipartition (X, Y) and $\operatorname{od}(G)=5$. Let $M=\{u, v, x, y, z\}$ be a odpu-set for G.

First, we shall show that $|X \cap M| \geq 2$ and $|Y \cap M| \geq 2$. Suppose, on the contrary, one of these inequalities fails to hold, say $|X \cap M| \leq 1$. If X has no element in M, then $1 \notin f_{M}^{o}(a)$ for all $\in M$, which is a contradiction. Therefore, $|X \cap M|=1$. Without loss of generality, let $\{u\}=X \cap M$. Then, since $1 \in f_{M}^{o}(v) \cap f_{M}^{o}(x) \cap f_{M}^{o}(y) \cap f_{M}^{o}(z)$, all the vertices v, x, y, z should be adjacent to u. Hence $2 \notin f_{M}^{o}(u)$, a contradiction. Thus, we see that each of X and Y must have at least two vertices in M. Without loss of generality, we may assume $u, v \in X$ and $x, y, z \in Y$.

Case 1. $r(G)=2$.
Then $f_{M}^{o}(w)=\{1,2\}$ for all $w \in Y$. Then proceeding as in Theorem 4.3, we get $\operatorname{deg}(u)=$ $\operatorname{deg}(v)=|Y|$ and $\operatorname{deg}(x)=\operatorname{deg}(y)=\operatorname{deg}(z)=|X|$. Therefore, by Theorem 4.3, $\{u, v, x, y\}$ forms an odpu-set of G, a contradiction to our assumption that M is a minimum odpu-set of G. Therefore, $r=2$ is not possible.

Case 2. $\quad r(G) \geq 3$.
Since M is an odpu-set of $G, f_{M}^{o}(a)=\{1,2, \ldots, r\}$ for all $a \in V(G)$. Then, since $2 \in f_{M}^{o}(u)$, there exists a vertex $b \in Y$ such that $u b, b v \in E(G)$. But since $b \in Y$ and $u b, b v \in E(G)$, $3 \notin f_{M}^{o}(b)$, which is a contradiction. Hence the result follows.

Conjecture 4.5 For a bipartite odpu-graph the odpu-number is always even.

Acknowledgment

The author is very much thankful to the Department of Science and Technology, Government of

India for its support as JRF under the projects SR/S4/MS:287/05 and SR/S4/277/06 at Centre for Mathematical Sciences, Pala and Mary Matha Arts \& Science College, Mananthavady. I am thankful to Dr.B.D. Acharya, who suggested the concept of odpu-sets and to Prof. S.B. Rao and Dr.K.A. Germina for their helpful suggestions. I am thankful to Prof. S. Arumugam whose valuable suggestions led to substantial improvement in the presentation of the paper.

References

[1] B. Bollobás, The Diameter of Random Graphs, Trans. Amer. Math. Soc., 267(2005), 51-60.
[2] F. Buckley and F. Harary, Distance in Graphs, Addison Wesley Publishing Company, CA, 1990.
[3] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), 322-324.
[4] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, International Edition, 2005.
[5] F. Gliviac, On radially critical graphs, In: Recent Advances in Graph Theory, Proc. Sympos. Prague, Academia Praha, Prague (1975) 207-221.
[6] F. Harary, Graph Theory, Addison Wesley, Reading, Massachusetts, 1969.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.

[^0]: ${ }^{1}$ Received May 28, 2009. Accepted Aug.31, 2009.

