Scientia Magna

Vol. 6 (2010), No. 2, 26-28

Smarandache's Orthic Theorem

Edited by Ion Patrascu
Fratii Buzesti College, Craiova, Romania

Abstract

In this paper We present the Smarandache's Orthic Theorem in the geometry of the triangle.

Keywords Smarandache's Orthic Theorem, triangle.

§1. The main result

Smarandache's Orthic Theorem

Given a triangle $A B C$ whose angles are all acute (acute triangle), we consider $A^{\prime} B^{\prime} C^{\prime}$, the triangle formed by the legs of its altitudes.

In which conditions the expression:

$$
\left\|A^{\prime} B^{\prime}\right\| \cdot\left\|B^{\prime} C^{\prime}\right\|+\left\|B^{\prime} C^{\prime}\right\| \cdot\left\|C^{\prime} A^{\prime}\right\|+\left\|C^{\prime} A^{\prime}\right\| \cdot\left\|A^{\prime} B^{\prime}\right\|
$$

is maximum?

Proof. We have

$$
\begin{equation*}
\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime} \triangle A B^{\prime} C \sim \triangle A^{\prime} B C^{\prime} \tag{1}
\end{equation*}
$$

We note

$$
\left\|B A^{\prime}\right\|=x,\left\|C B^{\prime}\right\|=y,\left\|A C^{\prime}\right\|=z
$$

It results that

$$
\begin{gathered}
\left\|A^{\prime} C\right\|=a-x,\left\|B^{\prime} A\right\|=b-y,\left\|C^{\prime} B\right\|=c-z \\
\widehat{B A C}=\widehat{B^{\prime} A^{\prime} C}=\widehat{B A^{\prime} C^{\prime}} ; \widehat{A B C}=\widehat{A B^{\prime} C^{\prime}}=\widehat{A^{\prime} B^{\prime} C^{\prime}} ; \widehat{B C A}=\widehat{B C^{\prime} A^{\prime}}=\widehat{B^{\prime} C^{\prime} A} .
\end{gathered}
$$

From these equalities it results the relation (1)

$$
\begin{align*}
& \triangle A^{\prime} B C^{\prime} \sim \triangle A^{\prime} B^{\prime} C \Rightarrow \frac{A^{\prime} C^{\prime}}{a-x}=\frac{x}{\left\|A^{\prime} B^{\prime}\right\|}, \tag{2}\\
& \triangle A^{\prime} B^{\prime} C \sim \triangle A B^{\prime} C^{\prime} \Rightarrow \frac{A^{\prime} C^{\prime}}{z}=\frac{c-z}{\left\|B^{\prime} c^{\prime}\right\|} \tag{3}\\
& \triangle A B^{\prime} C \sim \triangle A^{\prime} B^{\prime} C \Rightarrow \frac{B^{\prime} C^{\prime}}{y}=\frac{b-y}{\left\|A^{\prime} B^{\prime}\right\|} \tag{4}
\end{align*}
$$

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

$$
x(a-x)+y(b-y)+z(c-z)=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)-\left(x-\frac{a}{2}\right)^{2}-\left(y-\frac{b}{2}\right)^{2}-\left(z-\frac{c}{2}\right)^{2},
$$

which will reach its maximum as long as $x=\frac{a}{2}, y=\frac{b}{2}, z=\frac{c}{2}$, that is when the altitudes' legs are in the middle of the sides, therefore when the $\triangle A B C$ is equilateral. The maximum of the expression is $\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$.

§2. Conclusion (Smarandache's Orthic Theorem)

If we note the lengths of the sides of the triangle $\triangle A B C$ by $\|A B\|=c,\|B C\|=a,\|C A\|=$ b, and the lengths of the sides of its orthic triangle $\triangle A^{*} B^{*} C^{*}$ by $\left\|A^{*} B^{*}\right\|=c^{*},\left\|B^{*} C^{*}\right\|=$ $a^{*},\left\|C^{*} A^{*}\right\|=b^{*}$, then we proved that:

$$
4\left(a^{*} b^{*}+b^{*} c^{*}+c^{*} a^{*}\right) \leq a^{2}+b^{2}+c^{2}
$$

§3. Open problems related to Smarandache's Orthic Theorem

1. Generalize this problem to polygons. Let $A_{1} A_{2} \cdots A_{m}$ be a polygon and P a point inside it. From P we draw perpendiculars on each side $A_{i} A_{i+1}$ of the polygon and we note by $A_{i^{\prime}}$ the intersection between the perpendicular and the side $A_{i} A_{i+1}$. A pedal polygon $A_{1^{\prime}} A_{2^{\prime}} \cdots A_{m^{\prime}}$ is formed. What properties does this pedal polygon have?
2. Generalize this problem to polyhedrons. Let $A_{1} A_{2} \cdots A_{n}$ be a poliyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_{i} and we note by $A_{i^{\prime}}$ the intersection between the perpendicular and the side F_{i}. A pedal polyhedron $A_{1^{\prime}} A_{2}^{\prime} \cdots A_{p^{\prime}}$ is formed, where p is the number of polyhedron's faces. What properties does this pedal polyhedron have?

References

[1] Cătălin Barbu, Teorema lui Smarandache, Teoreme fundamentale din geometria triunghiului, Chapter II, Teoreme fundamentale din geometria triunghiului, Section II. 57, Editura Unique, Bacău, 2008, p. 337.
[2] József Sándor, On Smarandache's Pedal Theorem, Geometric Theorems, Diophantine Equations, and Arithmetic Functions, AR Press, Rehoboth, 2002, 9-10.
[3] Ion Pătraşcu, Smarandache's Orthic Theorem, http://www.scribd.com/doc/28311593/ Smarandache-s-Orthic-Theorem.
[4] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org, Cornell University, NY, USA.
[5] F. Smarandache, Problèmes avec et san. . . problèmes!, Somipress, Fés, Morocco, 1983, Problem 5. 41, p. 59.

