Scientia Magna

Vol. 1 (2006), No. 2, 71-75

The Smarandache P and S persistence of a prime

Felice Russo
Micron Technology Italy
67051 Avezzano (AQ), Italy

In [1], Sloane has defined the multiplicative persistence of a number in the following manner. Let's N be any n-digits number with $N=x_{1} x_{2} x_{3} \cdots x_{n}$ in base 10 . Multiplying together the digits of that number $\left(x_{1} \cdot x_{2} \cdots \cdots x_{n}\right)$, another number N^{\prime} results. If this process is iterated, eventually a single digit number will be produced. The number of steps to reach a single digit number is referred to as the persistence of the original number N. Here is an example:

$$
679 \rightarrow 378 \rightarrow 168 \rightarrow 48 \rightarrow 32 \rightarrow 6
$$

In this case, the persistence of 679 is 5 .
Of course, that concept can be extended to any base b. In [1], Sloane conjectured that, in base 10 , there is a number c such that no number has persistence greater than c. According to a computer search no number smaller than 10^{50} with persistence greater than 11 has been found. In [2], Hinden defined in a similar way the additive persistence of a number where, instead of multiplication, the addition of the digits of a number is considered. For example, the additive persistence of 679 is equal to 2 .

$$
679 \rightarrow 22 \rightarrow 4
$$

Following the same spirit, in this article we introduce two new concepts: the Smarandache P-persistence and the Smarandache S-persistence of a prime number. Let X be any n-digits prime number and suppose that $X=x_{1} x_{2} x_{3} \cdots x_{n}$ in base 10 . If we multiply together the digits of that prime $\left(x_{1} \cdot x_{2} \cdots \cdots x_{n}\right)$ and add them to the original prime $\left(X+x_{1} \cdot x_{2} \cdots \cdots x_{n}\right)$ a new number results, which may be a prime. If it is a prime then the process will be iterated otherwise not. The number of steps required to X to collapse in a composite number is called the Smarandache P-persistence of prime X. As an example, let's calculate the Smarandache P-persistence of the primes 43 and 23 :

$$
\begin{aligned}
43 & \rightarrow 55 \\
23 \rightarrow 29 & \rightarrow 47 \rightarrow 75,
\end{aligned}
$$

which is 1 and 3 , respectively. Of course, the Smarandache P-persistence minus 1 is equal to the number of primes that we can generate starting with the original prime X. Before proceeding, we must highlight that there will be a class of primes with an infinite Smarandache P-persistence; that is, primes that will never collapse in a composite number. Let's give an
example:

$$
61 \rightarrow 67 \rightarrow 109 \rightarrow 109 \rightarrow 109 \cdots
$$

In this case, being the product of the digits of the prime 109 always zero, the prime 61 will never reach a composite number. In this article, we shall not consider that class of primes since it is not interesting. The following table gives the smallest multidigit primes with Smarandache P-persistence less than or equal to 8 :

Smarandache P-persistence	Prime
1	11
2	29
3	23
4	347
5	293
6	239
7	57487
8	486193

By looking in a greater detail at the above table, we can see that, for example, the second term of the sequence (29) is implicitly inside the chain generated by the prime 23 . In fact:

$$
29 \rightarrow 47 \rightarrow 75
$$

$$
23 \rightarrow 29 \rightarrow 47 \rightarrow 75
$$

We can slightly modify the above table in order to avoid any prime that implicitly is inside other terms of the sequence.

Smarandache P-persistence	Prime
1	11
2	163
3	23
4	563
5	1451
6	239
7	57487
8	486193

Now, for example, the prime 163 will generate a chain that isn't already inside any other chain generated by the primes listed in the above table. What about primes with Smarandache P-persistence greater than 8 ? Is the above sequence infinite? We will try to give an answer
to the above question by using a statistical approach. Let's indicate with L the Smarandache P-persistence of a prime. Thanks to an u-basic code the occurrrencies of L for different values of N have been calculated. Here an example for $N=10^{7}$ and $N=10^{8}$:

Figure 1. Plot of the occurrencies for each P-persistence at two different values of N.

The interpolating function for that family of curves is given by:

$$
a(N) \cdot e^{-b(N) \cdot L}
$$

where $a(n)$ and $b(n)$ are two function of N. To determine the behaviour of those two functions, the values obtained interpolating the histogram of occurencies for different N have been used:

N	a	b
$1.00 E+04$	2238.8	1.3131
$1.00 E+05$	17408	1.4329
$1.00 E+06$	121216	1.5339
$1.00 E+07$	$1.00 E+06$	1.6991
$1.00 E+08$	$1.00 E+07$	1.968

Figure 2. Plot of the two functions $a(N)$ and $b(N)$ versus N

According to those data we can see that :

$$
a(N) \approx k \cdot N \quad b(N) \approx h \cdot \ln (N)+c
$$

where k, h and c are constants (see Figure 2).
So the probability that $L \geq M$ (where M is any integer) for a fixed N is given by:

$$
P(L \geq M) \approx \frac{\int_{M}^{\infty} k N \cdot e^{-(h \ln N+c) \cdot L} d L}{\int_{0}^{\infty} k N \cdot e^{-(h \ln N+c) \cdot L} d L}=e^{-(h \cdot \ln N+c) \cdot M}
$$

and the counting function of the primes with Smarandache P-persistence $L=M$ below N is given by $N \cdot P(L=M)$. In Figure 3, the plot of counting function versus N for 4 different L values is reported. As we can see, for $L<15$ and $L \geq 15$ there is a breaking in the behaviour of the occurrencies. For $L \geq 15$, the number of primes is very very small (less than 1) regardless the value of N and it becomes even smaller as N increases. The experimental data seem to support that L cannot take any value and that most likely the maximum value should be $L=14$ or close to it. So the following conjecture can be posed:

Conjecture 1. There is an integer M such that no prime has a Smarandache P-persistence greater than M. In other words the maximum value of Smarandache P-persistence is finite

Figure 3. Counting function for the P-persistence for difference values of N

Following a similar argumentation the Smarandache S-persistence of a prime can be defined. In particular it is the number of steps before a prime number collapse to a composite number considering the sum of the digits instead of the product as done above. For example let's calculate the Smarandache S-persistence of the prime 277:

$$
277 \rightarrow 293 \rightarrow 307 \rightarrow 317 \rightarrow 328
$$

In this case we have a Smarandache S-persistence equal to 4 . The sequence of the smallest multidigit prime with Smarandache S-persistence equal to $1,2,3,4 \cdots$ has been found by Rivera [3]. Anyway no prime has been found with the Smarandache S-persistence greater than 8 up to $N=18038439735$. Moreover by following the same statistical approach used above for the Smarandache P-persistence the author has found a result similar to that obtained for the Smarandache P-persistence(see [3] for details). Since the statistical approach applied to the Smarandache P and S persistence gives the same result (counting function always smaller than 1 for $L \geq 15$) we can be confident enough to pose the following conjecture:

Conjecture 2. The maximum value of the Smarandache P and S persistence is the same.

References

[1] N.Sloane, The persistence of a number, Recr. Math. J., Spring, 2(1973).
[2] H.J.Hinden, The Additive Persistence of a Number, Recr. Math. J., 7(1974), 134-135.
[3] C.Rivera, Puzzle 163: P+SOD(P), http://www.primepuzzles.net/puzzles/puzz-163.htm.

