On Pathos Lict Subdivision of a Tree

Keerthi G.Mirajkar and Iramma M.Kadakol

(Department of Mathematics, Karnatak Arts College, Dharwad-580 001, Karnataka, India)
Email: keerthi_gm@yahoo.co.in, iramma.k@gmail.com

Abstract

Let G be a graph and $E_{1} \subset E(G)$. A Smarandachely E_{1}-lict graph $n^{E_{1}}(G)$ of a graph G is the graph whose point set is the union of the set of lines in E_{1} and the set of cutpoints of G in which two points are adjacent if and only if the corresponding lines of G are adjacent or the corresponding members of G are incident.Here the lines and cutpoints of G are member of G. Particularly, if $E_{1}=E(G)$, a Smarandachely $E(G)$-lict graph $n^{E(G)}(G)$ is abbreviated to lict graph of G and denoted by $n(G)$. In this paper, the concept of pathos lict sub-division graph $P_{n}[S(T)]$ is introduced. Its study is concentrated only on trees. We present a characterization of those graphs, whose lict sub-division graph is planar, outerplanar, maximal outerplanar and minimally nonouterplanar. Further, we also establish the characterization for $P_{n}[S(T)]$ to be eulerian and hamiltonian.

Key Words: pathos, path number, Smarandachely lict graph, lict graph, pathos lict subdivision graphs, Smarandache path k-cover, pathos point.

AMS(2010): 05C10, 05C99

§1. Introduction

The concept of pathos of a graph G was introduced by Harary [1] as a collection of minimum number of line disjoint open paths whose union is G. The path number of a graph G is the number of paths in a pathos. Stanton [7] and Harary [3] have calculated the path number for certain classes of graphs like trees and complete graphs. The subdivision of a graph G is obtained by inserting a point of degree 2 in each line of G and is denoted by $S(G)$. The path number of a subdivision of a tree $S(T)$ is equal to K, where $2 K$ is the number of odd degree point of $S(T)$. Also, the end points of each path of any pathos of $S(T)$ are odd points. The lict graph $n(G)$ of a graph G is the graph whose point set is the union of the set of lines and the set of cutpoints of G in which two points are adjacent if and only if the corresponding lines of G are adjacent or the corresponding members of G are incident.Here the lines and cutpoints of G are member of G .

For any integer $k \geq 1$, a Smarandache path k-cover of a graph G is a collection ψ of paths in G such that each edge of G is in at least one path of ψ and two paths of ψ have at most

[^0]k vertices in common. Thus if $k=1$ and every edge of G is in exactly one path in ψ, then a Smarandache path k-cover of G is a simple path cover of G. See [8].

By a graph we mean a finite, undirected graph without loops or multiple lines. We refer to the terminology of [1]. The pathos lict subdivision of a tree T is denoted as $P_{n}[S(T)]$ and is defined as the graph, whose point set is the union of set of lines, set of paths of pathos and set of cutpoints of $S(T)$ in which two points are adjacent if and only if the corresponding lines of $S(T)$ are adjacent and the line lies on the corresponding path P_{i} of pathos and the lines are incident to the cutpoints. Since the system of path of pathos for a $S(T)$ is not unique, the corresponding pathos lict subdivision graph is also not unique. The pathos lict subdivision graph is defined for a tree having at least one cutpoint.

In Figure 1, a tree T and its subdivision graph $S(T)$, and their pathos lict subdivision graphs $P_{n}[S(T)]$ are shown.

Figure 1

The line degree of a line $u v$ in $S(T)$ is the sum of the degrees of u and v. The pathos length is the number of lines which lies on a particular path P_{i} of pathos of $S(T)$. A pendant pathos is a path P_{i} of pathos having unit length which corresponds to a pendant line in $S(T)$. A pathos point is a point in $P_{n}[S(T)]$ corresponding to a path of pathos of $S(T)$. If G is planar graph, the innerpoint number $i(G)$ of a graph G is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of the plane. A graph is said to be minimally nonouterplanar if $i(G)=1$ was given by [4].

We need the following for immediate use.
Remark 1.1 For any tree $T, n[S(T)]$ is a subgraph of $P_{n}[S(T)]$.
Remark 1.2 For any tree $T, T \subseteq S(T)$.
Remark 1.3 If the line degree of a nonpendant line in $S(T)$ is odd(even), the correspondig point in $P_{n}[S(T)]$ is of even(odd) degree.

Remark 1.4 The pendant line in $S(T)$ is always odd degree and the corresponding point in $P_{n}[S(T)]$ is of odd degree.

Remark 1.5 For any tree T with C cutpoints, the number of cutpoints in $n[S(T)]$ is equal to sum of the lines incident to C in T.

Remark 1.6 For any tree T, the number of blocks in $n[S(T)]$ is equal to the sum of the cutpoints and lines of T.

Remark $1.7 n[S(T)]$ is connected if and only if T is connected.
Theorem 1.1([5]) If G is a non trivial connected (p, q) graph whose points have degree d_{i} and l_{i} be the number of lines to which cutpoint C_{i} belongs in G, then lict graph $n(G)$ has $q+\sum C_{i}$ points and $-q+\sum\left[\frac{d_{i}^{2}}{2}+l_{i}\right]$ lines.

Theorem 1.2([5]) The lict graph $n(G)$ of a graph G is planar if and only if G is planar and the degree of each point is atmost 3 .

Theorem 1.3([2]) Every maximal outerplanar graph G with p points has $2 p-3$ lines.
Theorem 1.4([6]) A graph is a nonempty path if and only if it is a connected graph with $p \geq 2$ points and $\sum d_{i}^{2}-4 p+6=0$.

Theorem 1.5([2]) A graph G is eulerian if and only if every point of G is of even degree.

§2. Pathos Lict Subdivision Graph

In the following Theorem we obtain the number of points and lines of $P_{n}[S(T)]$.
Theorem 2.1 For any (p, q) graph T, whose points have degree d_{i} and cutpoints C have degree C_{j}, then the pathos lict sub-division graph $P_{n}[S(T)]$ has $\left(3 q+C+P_{i}\right)$ points and $\frac{1}{2} \sum d_{i}^{2}+4 q+$ $\sum C_{j}$ lines.

Proof By Theorem 1.1, $n(T)$ has $q+\sum c$ points by subdivision of $T n(S(T))$ contains $2 q+q+\sum c$ points and by Remark 1.1, $P_{n} S(T)$ will contain $3 q+\sum c+P_{i}$ points, where P_{i} is the path number. By the definition of $n(T)$, it follows that $L(T)$ is a subgraph of $n(T)$. Also, subgraphs of $L(T)$ are line-disjoint subgraphs of $n[S(T)]$ whose union is $L(T)$ and the cutpoints c of T having degree C_{j} are also the members of $n[s(T)]$. Hence this implies that $n[s(T)]$ contains $-q+\frac{1}{2} \sum d_{i}^{2}+\sum c_{j}$ lines. Apart from these lines every subdivision of T generates
a line and a cutpoint c of degree 2 . This creates $q+2 q$ lines in $n[s(T)]$. Thus $n[S(T)]$ has $\frac{1}{2} \sum d_{i}^{2}+\sum c_{j}+2 q$ lines. Further, the pathos contribute $2 q$ lines to $P_{n} S(T)$. Hence $P_{n}[S(T)]$ contains $\frac{1}{2} \sum d_{i}^{2}+\sum c_{j}+4 q$ lines.

Corollary 2.1 For any (p, q) graph T, the number of regions in $P_{n}[S(T)]$ is $2(p+q)-3$.

§3. Planar Pathos Lict Sub-division Graph

In this section we obtain the condition for planarity of pathos.

Theorem 3.1 $P_{n}[S(T)]$ of a tree T is planar if and only if $\Delta(T) \leq 3$.
Proof Suppose $P_{n}[S(T)]$ is planar. Assume $\Delta(T) \leq 4$. Let v be a point of degree 4 in T. By Remark 1.1, $n\left(S(T)\right.$) is a subgraph of $P_{n}[S(T)]$ and by Theorem 1.2, $P_{n}[S(T)]$ is non-planar. Clearly, $P_{n}[S(T)]$ is non-planar, a contradiction.

Conversely, suppose $\Delta(T) \leq 3$. By Theorem 1.2, $n[S(T)]$ is planar. Further each block of $n[S(T)]$ is either K_{3} or K_{4}. The pathos point is adjacent to atmost two vertices of each block of $n[S(T)]$. This gives a planar $P_{n}[S(T)]$.

We next give a characterization of trees whose pathos lict subdivision of trees are outerplanar and maximal outerplanar.

Theorem 3.2 The pathos lict sub-division graph $P_{n}[S(T)]$ of a tree T is outerplanar if and only if $\Delta(T) \leq 2$.

Proof Suppose $P_{n}[S(T)]$ is outerplanar. Assume T has a point v of degree 3 . The lines incident to v and the cut-point v form $\left\langle K_{4}\right\rangle$ as a subgraph in $n[S(T)]$. Hence $P_{n}[S(T)]$ is non-outerplanar, a contradiction.

Conversely, suppose T is a path P_{m} of length $m \geq 1$, by definition each block of $n[S(T)]$ is K_{3} and $n[S(T)]$ has $2 m-1$ blocks. Also, $S(T)$ has exactly one path of pathos and the pathos point is adjacent to atmost two points of each block of $n[S(T)]$. The pathos point together with each block form $2 m-1$ number of $\left\langle K_{4}-x\right\rangle$ subgraphs in $P_{n}[S(T)]$. Hence $P_{n}[S(T)]$ is outerplanar.

Theorem 3.3 The pathos lict sub-division graph $P_{n}[S(T)]$ of a tree T is maximal outerplanar if and only if.

Proof Suppose $P_{n}[S(T)]$ is maximal outerplanar. Then $P_{n}[S(T)]$ is connected. Hence by Remark 1.7, T is connected. Suppose $P_{n}[S(T)]$ is $K_{4}-x$, then clearly, T is K_{2}. Let T be any connected tree with $p>2$ points, q lines and having path number k and C cut-points. Then clearly, $P_{n}[S(T)]$ has $3 q+k+C$ points and $\frac{1}{2} \sum d_{i}^{2}+4 q+\sum C_{j}$ lines. Since $P_{n}[S(T)]$ is maximal
outerplanar, by Theorem 1.3, it has $[2(3 q+k+C)-3]$ lines. Hence

$$
\begin{aligned}
\frac{1}{2} \sum d_{i}^{2}+4 q+\sum C_{j} & =[2(3 q+k+C)-3] \\
& =[2(3(p-1)+k+C)-3] \\
& =6 p-6+2 k+2 C-3 \\
& =6 p+2 k+2 C-9
\end{aligned}
$$

But for $k=1$,

$$
\begin{gathered}
\sum d_{i}^{2}+8 q+2 \sum C_{j}=12 p+4 C-18+4 \\
\sum d_{i}^{2}+2 \sum C_{j}=4 p+4 C-6 \\
\sum d_{i}^{2}+2 \sum C_{j}-4 p-4 C+6=0
\end{gathered}
$$

Since every cut-point is of degree two in a path, we have,

$$
\sum C_{j}=2 C
$$

Therefore

$$
\sum d_{i}^{2}+6-4 p=4 C-2 x 2 C=0
$$

Hence $\sum d_{i}^{2}+6-4 p=0$. By Theorem 1.4, it follows that T is a non-empty path.
Conversely, Suppose T is a non-empty path. We now prove that $P_{n}[S(T)]$ is maximal outerplanar by induction on the number of points (≥ 2). Suppose T is K_{2}. Then $P_{n}[S(T)]=K_{4}-x$. Hence it is maximal outerplanar. As the inductive hypothesis, let the pathos lict subdivision of a non-empty path P with n points be maximal outerplanar. We now show that $P_{n}[S(T)]$ of a path P with $n+1$ points is maximal outerplanar. First we prove that it is outerplanar. Let the point and line sequence of the path P^{\prime} be $v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, e_{3}, \ldots, v_{n}, e_{n}, v_{n+1}$. $P^{\prime}, S\left(P^{\prime}\right)$ and $P_{n}\left[S\left(P^{\prime}\right)\right]$ are shown in Figure 2. Without loss of generality, $P^{\prime}-v_{n+1}=P$. By inductive hypothesis $P_{n}[S(P)]$ is maximal outerplanar. Now the point v_{n+1} is one point more in $P_{n}\left[S\left(P^{\prime}\right)\right]$ than in $P_{n}[S(P)]$. Also there are only eight lines $\left(e_{n-1}^{\prime}, e_{n}\right),\left(e_{n-1}^{\prime}, e_{n-1}\right)$, $\left(e_{n-1}, e_{n}\right),\left(e_{n}, R\right),\left(e_{n}, e_{n}^{\prime}\right),\left(e_{n}, C_{n}^{\prime}\right),\left(C_{n}^{\prime}, e_{n}^{\prime}\right),\left(e_{n}^{\prime}, R\right)$ more in $P_{n}\left[S\left(P^{\prime}\right)\right]$. Clearly, the induced subgraph on the points $e_{n-1}^{\prime}, C_{n-1}, e_{n}, e_{n}^{\prime}, C_{n}^{\prime}, R$ is not K_{4}. Hence $P_{n}\left[S\left(P^{\prime}\right)\right]$ is outerplanar. We now prove $P_{n}\left[S\left(P^{\prime}\right)\right]$ is maximal outerplanar. Since $P_{n}[S(P)]$ is maximal outerplanar, it has $2(3 q+C+1)-3$ lines. The outerplanar graph $P_{n}\left[S\left(P^{\prime}\right)\right]$ has $2(3 q+C+1)-3+8$ lines $=2[3(q+1)+(C+)+1]-3$ lines. By Theorem 1.3, $P_{n}\left[S\left(P^{\prime}\right)\right]$ is maximal outerplanar.

Theorem 3.4 For any tree $T, P_{n}[S(T)]$ is minimally nonouterplanar if and only if $\Delta(T) \leq 3$ and T has a unique point of degree 3.

Proof Suppose $P_{n}[S(T)]$ is minimally non-outerplanar. Assume $\Delta(T)>3$. By Theorem 3.1, $P_{n}[S(T)]$ is nonplanar, a contradiction. Hence $\Delta(T) \leq 3$.

Assume $\Delta(T)<3$. By Theorem 3.2, $P_{n}[S(T)]$ is outerplanar, a contradiction. Thus $\Delta(T)=3$.

Assume there exist two points of degree 3 in T. Then $n[S(T)]$ has at least two blocks as K_{4}. Any pathos point of $S(T)$ is adjacent to atmost two points of each block in $n[S(T)]$ which gives $i\left(P_{n}[S(T)]\right)>1$, a contradiction. Hence T has exactly one point point of degree 3 .

Conversely, suppose every point of T has degree ≤ 3 and has a unique point of degree 3 , then $n[S(T)]$ has exactly one block as K_{4} and remaining blocks are K_{3} 's. Each pathos point is adjacent to atmost two points of each block. Hence $i\left(P_{n}[S(T)]\right)=1$.

Figure 2

§4. Traversability in Pathos Lict Subdivision of a Tree

In this section, we characterize the trees whose $P_{n}[S(T)]$ is eulerian and hamiltonian.

Theorem 4.1 For any non-trivial tree T, the pathos lict subdivision of a tree is non-eulerian.
Proof Let T be a non-trivial tree. Remark 1.4 implies $P_{n}[S(T)]$ always contains a point of odd degree. Hence by Theorem 1.5, the result follows.

Theorem 4.2 The pathos lict subdivision $P_{n}[S(T)]$ of a tree T is hamiltonian if and only if every cut-point of T is even of degree.

Proof If $T=P_{2}$, then $P_{n}[S(T)]$ is $K_{4}-x$. If T is a tree with $p \geq 3$ points. Suppose $P_{n}[S(T)]$ is hamiltonian. Assume that T has at least one cut-point v of odd degree m. Then $G=K_{1, m}$ is a subgraph of T. Clearly, $n\left(S\left(K_{1, m}\right)\right)=K_{m+1}$, together with each point of K_{m} incident to a line of K_{3}. In number of path of pathos of $S(T)$ there exist at least one path of pathos P_{i} such that it begins with the cut-point v of $S(T)$. In $P_{n}[S(T)]$ each pathos point is adjacent to exactly two points of K_{m}. Further the pathos beginning with the cut-point v of $S(T)$ is adjacent to exactly one point of K_{m} in $n(S(T))$. Hence this creates a cut-point in $P_{n}[S(T)]$, a contradiction.

Conversely, suppose every cut-point of T is even. Then every path of pathos starts and ends at pendant points of T.

We consider the following cases.
Case 1 If T has only cut-points of degree two. Clearly, T is a path. Further $S(T)$ is also a path with $p+q$ points and has exactly one path of pathos. Let $T=P_{l}, v_{1}, v_{2}, \cdots, v_{l}$ is a path. Now $S(T): v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, \cdots, v_{l-1}^{\prime}, v_{l}$ for all $v_{i} \in V\left[S\left(P_{l}\right)\right]$ such that $v_{i} v_{i}^{\prime}=e_{i}, v_{i}^{\prime} v_{i+1}=e_{i}^{\prime}$ are consecutive lines and for all $e_{i}, e_{i}^{\prime} \in E\left[S\left(P_{n}\right)\right]$. Further $V[n(S(T))]=\left\{e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{i}, e_{i}^{\prime}\right\} \cup$ $\left\{C_{1}^{\prime}, C_{1}, C_{2}^{\prime}, C_{2}, \cdots, C_{i}^{\prime}\right\}$ where, $\left(C_{1}^{\prime}, C_{1}, C_{2}^{\prime}, C_{2}, \cdots, C_{i}^{\prime}\right)$ are cut-points of $S(T)$. Since each block is a triangle in $n(S(T))$ and each block consist of points as $B_{1}=\left(e_{1} C_{1}^{\prime} e_{1}^{\prime}\right), B_{2}=\left(e_{2} C_{2}^{\prime} e_{2}^{\prime}\right), \cdots$, $B_{m}=\left(e_{i} C_{i}^{\prime} e_{i}^{\prime}\right)$. In $P_{n}[S(T)]$, the pathos point w is adjacent to $e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{i}, e_{i}^{\prime}$. Hence, $P_{n}[S(T)]=e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{i}, e_{i}^{\prime} \cup\left(C_{1}^{\prime}, C_{1}, C_{2}^{\prime}, C_{2}, \cdots, C_{i}^{\prime}\right) \cup w$ form a cycle as $w e_{1} C_{1}^{\prime} e_{1}^{\prime} C_{1} e_{2} C_{2}^{\prime} e_{2}^{\prime}$ $\cdots e_{i}^{\prime} w$ containing all the points of $P_{n}[S(T)]$.Hence $P_{n}[S(T)]$ is hamiltonian.

Case 2 If T has all cut-points of even degree and is not a path.
we consider the following subcases of this case.
Subcase 2.1. If T has exactly one cut-point v of even degree $m, v=\Delta(T)$ and is $K_{1, m}$. Clearly, $S\left(K_{1, m}\right)=F$, such that $E(F)=\left\{e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{q}, e_{q}^{\prime}\right\}$. Now $n(F)$ contains point set as $\left\{e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{q}, e_{q}^{\prime}\right\} \cup\left\{v, C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, \cdots, C_{q}^{\prime}\right\}$. For $S\left[K_{1, m}\right]$, it has $\frac{m}{2}$ paths of pathos with pathos point as $P_{1}, P_{2}, \cdots, P_{\frac{m}{2}}$. By definition of $P_{n}[S(T)]$, each pathos point is adjacent to exactly two points of $n(S(T))$. Also, $V\left[P_{n}[S(T)]\right]=\left\{e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{q}, e_{q}^{\prime}\right\} \cup\left\{v, C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, \cdots, C_{q}^{\prime}\right\}$ $\cup\left\{P_{1}, P_{2}, \cdots, P_{\frac{m}{2}}\right\}$. Then there exist a cycle containing all the points of $P_{n}[S(T)]$ as $P_{1}, e_{1}^{\prime}, C_{1}^{\prime}, e_{1}$, $v, e_{2}, C_{2}^{\prime}, e_{2}^{\prime}, P_{2}, \cdots, P_{\frac{m}{2}}, e_{q-1}^{\prime}, C_{q-1}^{\prime}, e_{q-1}, e_{q}, C_{q}^{\prime}, e_{q}^{\prime}, P_{1}$.

Subcase 2.2. Assume T has more than one cut-point of even degree. Then in $n(S(T))$ each block is complete and every cut-point lies on exactly two blocks of $n(S(T))$. Let $V[n(S(T))]=\left\{e_{1}\right.$, $\left.e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \cdots, e_{q}, e_{q}^{\prime}\right\} \cup\left\{C_{1}, C_{2}, \cdots, C_{i}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, \cdots, C_{q}^{\prime}\right\} \cup\left\{P_{1}, P_{2}, \cdots, P_{j}\right\}$. But each P_{j} is adjacent to exactly two point of the block B_{j} except $\left\{C_{1}, C_{2}, \cdots, C_{i}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, \cdots, C_{q}^{\prime}\right\}$ and all these points together form a hamiltonian cycle of the type, $\left\{P_{1}, e_{1}^{\prime}, C_{1}^{\prime}, e_{1}, v, e_{2}, C_{2}^{\prime}, e_{2}^{\prime}, P_{2}\right.$, $\left.\cdots, P_{r}, e_{k}^{\prime}, C_{k}^{\prime}, e_{k}, e_{k+1}, C_{k+1}^{\prime}, e_{k+1}^{\prime}, P_{r+1}, \cdots, P_{j}, e_{q-1}^{\prime}, C_{q-1}^{\prime}, e_{q-1}, e_{q}, C_{q}^{\prime}, e_{q}^{\prime}, P_{1}\right\}$.

Hence $P_{n}[S(T)]$ is hamiltonian.

References

[1] Harary. F, Annals of New York, Academy of Sciences,(1974)175.
[2] Harary. F, Graph Theory, Addison-Wesley, Reading, Mass,1969.
[3] Harary F and Schwenik A.J, Graph Theory and Computing, Ed.Read R.C, Academic press, New York,(1972).
[4] Kulli V.R, Proceedings of the Indian National Science Academy, 61(A),(1975), 275.
[5] Kulli V.R and Muddebihal M.H, J. of Analysis and computation,Vol 2, No.1(2006), 33.
[6] Kulli V.R, The Maths Education, (1975),9.
[7] Stanton R.G, Cowan D.D and James L.O, Proceedings of the louisiana conference on combinatorics, Graph Theory and Computation (1970), 112.
[8] S. Arumugam and I. Sahul Hamid, International J.Math.Combin. Vol.3,(2008), 94-104.

[^0]: ${ }^{1}$ Received July 18, 2010. Accepted December 25, 2010.

