On Pathos Semitotal and Total Block Graph of a Tree

Muddebihal M. H.
(Department of Mathematics, Gulbarga University, Gulbarga, India) Syed Babajan
(Department of Mathematics, Ghousia College of Engineering, Ramanagaram, India)
E-mail: babajan.ghousia@gmail.com

Abstract

In this communications, the concept of pathos semitotal and total block graph of a graph is introduced. Its study is concentrated only on trees. We present a characterization of those graphs whose pathos semitotal block graphs are planar, maximal outer planar, non-minimally non-outer planar, non-Eulerian and hamiltonian. Also, we present a characterization of graphs whose pathos total block graphs are planar, maximal outer planar, minimally non-outer planar, non-Eulerian, hamiltonian and graphs with crossing number one.

Key Words: Pathos, path number, Smarandachely block graph, semitotal block graph, Total block graph, pathos semitotal graph, pathos total block graph, pathos length, pathos point, inner point number.

AMS(2010): 05C75

§1. Introduction

The concept of pathos of a graph G was introduced by Harary [2], as a collection of minimum number of line disjoint open paths whose union is G. The path number of a graph G is the number of paths in pathos. A new concept of a graph valued functions called the semitotal and total block graph of a graph was introduced by Kulli [6]. For a graph $G(p, q)$ if $B=$ $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{r} ; r \geq 2\right\}$ is a block of G, then we say that point u_{1} and block B are incident with each other, as are u_{2} and B and so on. If two distinct blocks B_{1} and B_{2} are incident with a common cut point, then they are adjacent blocks. The points and blocks of a graph are called its members. A Smarandachely block graph $T_{S}^{V}(G)$ for a subset $V \subset V(G)$ is such a graph with vertices $V \cup \mathcal{B}$ in which two points are adjacent if and only if the corresponding members of G are adjacent in $\langle V\rangle_{G}$ or incident in G, where \mathcal{B} is the set of blocks of G. The semitotal block graph of a graph G denoted by $T_{b}(G)$ is defined as the graph whose point set is the union of set of points, set of blocks of G in which two points are adjacent if and only if members of G are incident, thus a Smarandachely block graph with $V=\emptyset$. The total block graph of a graph

[^0]G denoted by $T_{B}(G)$ is defined as the graph whose point set is the union of set of points, set of blocks of G in which two points are adjacent if and only if the corresponding members of G are adjacent or incident, i.e., a Smarandachely block graph with $V=V(G)$. Stanton [11] and Harary [3] have calculated the path number for certain classes of graphs like trees and complete graphs.

All undefined terminology will conform with that in Harary [1]. All graphs considered here are finite, undirected and without loops or multiple lines.

The pathos semitotal block graph of a tree T denoted by $P_{T_{B}}(T)$ is defined as the graph whose point set is the union of set of points, set of blocks and the set of path of pathos of T in which two points are adjacent if and only if the corresponding members of G are incident and the lines lie on the corresponding path P_{i} of pathos. Since the system of pathos for a tree is not unique, the corresponding pathos semitotal and pathos total block graph of a tree T is also not unique.

In Fig.1, a tree T, its semitotal block graph $T_{b}(T)$ and their pathos semi total block $P_{T_{b}}(T)$ graph are shown. In Fig. 2, a tree T, its semitotal block graph $T_{b}(T)$ and their pathos total block $P_{T_{B}}(T)$ graph are shown.

The line degree of a line $u v$ in a tree T, pathos length, pathos point in T was defined by Muddebihal [10]. If G is planar, the inner point number $i(G)$ of a graph G is the minimum number of points not belonging to the boundary of the exterior region in any embedding of G in the plane. A graph G is said to be minimally nonouterplanar if $i(G)=1$, as was given by Kulli [4].

We need the following results to prove further results.

Theorem [A][Ref.6] If G is connected graph with p points and q lines and if b_{i} is the number of blocks to which v_{i} belongs in G, then the semitotal block graph $T_{b}(G)$ has $\left(\sum_{i=1}^{p} b_{i}\right)+1$, points and $q+\left(\sum_{i=1}^{p} b_{i}\right)$ lines.

Theorem [B][Ref.6] If G is connected graph with p points and q lines and if b_{i} is the number of blocks to which v_{i} belongs in G, then the total block graph $T_{B}(G)$ has $\left(\sum_{i=1}^{p} b_{i}\right)+1$, points and $q+\sum_{i=1}^{p}\binom{b_{i}+1}{2}$ lines.

Theorem [C][Ref.8] The total block graph $T_{B}(G)$ of a graph G is planar if and only if G is outerplanar and every cutpoint of G lies on atmost three blocks.

Theorem [D] [Ref.7] The total block graph $T_{B}(G)$ of a connected graph G is minimally nonouter planar if and only if,
(1) G is a cycle, or
(2) G is a path P of length $n \geq 2$, together with a point which is adjacent to any two adjacent points of P.

Figure 1:

Theorem [E][Ref.9] The total block graph $T_{B}(G)$ of a graph G crossing number 1 if and only if
(1) G is outer planar and every cut point in G lies on at most 4 blocks and G has a unique cut point which lies on 4 blocks, or
(2) G is minimally non-outer planar, every cut point of G lies on at most 3 blocks and exactly one block of G is theta-minimally non-outer planar.

Corollary [A][Ref.1] Every nontrivial tree contains at least two end points.
Theorem [F][Ref.1] Every maximal outerplanar graph G with p points has $(2 p-3)$ lines.
Theorem [G][Ref.5] A graph G is a non empty path if and only if it is connected graph with $p \geq 2$ points and $\sum_{i=1}^{p} d_{i}{ }^{2}-4 p+6=0$.

§2. Pathos Semitotal Block Graph of a Tree

We start with a few preliminary results.

Remark 1 The number of blocks in pathos semitotal block graph of $P_{T_{b}}(T)$ of a tree T is equal to the number of pathos in T.

Remark 2 If the degree of a pathos point in pathos semi total block graph $P_{T_{b}}(T)$ of a tree T is n, then the pathos length of the corresponding path P_{i} of pathos in T is $n-1$.

Kulli [6] developed the new concept in graph valued functions i.e., semi total and total block graph of a graph. In this article the number of points and lines of a semi total block graph of a graph has been expressed in terms of blocks of G. Now using this we have a modified theorem as shown below in which we have expressed the number of points and lines in terms of lines and degrees of the points of G which is a tree.

Theorem 1 For any (p, q) tree T, the semitotal block graph $T_{b}(T)$ has $(2 q+1)$ points and $3 q$ lines.

Proof By Theorem [A], the number of points in $T_{b}(G)$ is $\left(\sum_{i=1}^{p} b_{i}\right)+1$, where b_{i} are the number of blocks in T to which the points v_{i} belongs in G. Since $\sum b_{i}=2 q$, for G is a tree. Thus the number of points in $T_{b}(G)=2 q+1$. Also, by Theorem [A] the number of lines in $T_{b}(G)$ are $q+\left(\sum_{i=1}^{b} b_{i}\right)$, since $\sum b_{i}=2 q$ for G is a tree. Thus the number of lines in $T_{b}(G)$ is $q+2 q=3 q$.

In the following theorem we obtain the number of points and lines in $P_{T_{b}}(T)$.
Theorem 2 For any non trivial tree T, the pathos semitotal block graph of a tree T, whose points have degree d_{i}, then the number of points in $P_{T_{b}}(T)$ are $(2 q+k+1)$ and the number of lines are $\left(2 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$, where k is the path number.

Proof By Theorem 1, the number of points in $T_{b}(T)$ are $2 q+1$, and by definition of $P_{T_{b}}(T)$, the number of points in $(2 \mathrm{q}+\mathrm{k}+1)$, where k is the path number. Also by Theorem 1 , the number of lines in $T_{b}(T)$ are $3 q$. The number of lines in $P_{T_{b}}(T)$ is the sum of lines in $T_{b}(T)$ and the number of lines which lie on the points of pathos of T which are to $\left(-q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$. Thus the number of lines in is equal to $\left(3 q+\left(-q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)\right)=\left(2 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$.

§2. Planar Pathos Semitotal Block Graphs

A criterion for pathos semi total block graph to be planar is presented in our next theorem.
Theorem 3 For any non trivial tree T, the pathos semitotal block graph $P_{T_{b}}(T)$ of a tree T is planar.

Proof Let T be a non trivial tree, then in $T_{b}(T)$ each block is a triangle. We have the following cases.

Case 1 Suppose G is a path, $G=P_{n}: u_{1}, u_{2}, u_{3}, \ldots, u_{n}, n>1$. Further, $V\left[T_{b}(T)\right]=$
$\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}\right\}$, where $b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}$ are the corresponding block points. In pathos semi total block graph $P_{T_{b}}(T)$ of a tree $T,\left\{u_{1} b_{1} u_{2} w, u_{2} b_{2} u_{3} w, u_{3} b_{3} u_{4} w, \ldots\right.$, $\left.u_{n-1} b_{n-1} u_{n} w\right\} \in V\left[P_{T_{b}}(T)\right]$, each set $\left\{u_{n-1} b_{n-1} u_{n} w\right\}$ forms an induced subgraph as $K_{4}-x$. Hence one can easily verify that $P_{T_{b}}(T)$ is planar.

Case 2 Suppose G is not a path. Then $V\left[T_{b}(G)\right]=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}\right\}$ and $w_{1}, w_{2}, w_{3}, \ldots, w_{k}$ be the pathos points. Since $u_{n-1} u_{n}$ is a line and $u_{n-1} u_{n}=b_{n-1} \in V\left[T_{b}(G)\right]$. Then in $P_{T_{b}}(G)$ the set $\left\{u_{n-1} b_{n-1} u_{n} w\right\} \forall n>1$, forms $K_{4}-x$ as an induced subgraphs. Hence $P_{T_{b}}(G)$ is planar.

Further we develop the maximal outer planarity of $P_{T_{b}}(G)$ in the following theorem.

Theorem 4 For any non trivial tree T, the pathos semitotal block graph $P_{T_{b}}(T)$ of a tree T is maximal outer planar if and only if T is a path.

Proof Suppose $P_{T_{b}}(T)$ is maximal outer planar. Then $P_{T_{b}}(T)$ is connected. Hence T is connected. If $P_{T_{b}}(T)$, is $K_{4}-x$, then obviously T is k_{2}.

Let T be any connected tree with $p \geq 2, q$ lines b_{i} blocks and path number k, then clearly $P_{T_{b}}(T)$ has $(2 q+k+1)$ points and $\left(2 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$ lines. Since $P_{T_{b}}(T)$ is maximal outer planar, by Theorem $[\mathrm{F}]$, it has $[2(2 q+k+1)-3]$ lines. Hence,

$$
\begin{aligned}
& 2+2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}=2(2 \mathrm{q}+\mathrm{k}+1)-3=4 \mathrm{q}+2 \mathrm{k}+2-3=4 \mathrm{q}+2 \mathrm{q}-1 \\
& \frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}=2 \mathrm{q}+2 \mathrm{k}-3 \\
& \sum_{i=1}^{p} d_{i}^{2}=4 \mathrm{q}+4 \mathrm{k}-6 \\
& \sum_{i=1}^{p} d_{i}^{2}=4(\mathrm{p}-1)+4 \mathrm{k}-6 \\
& \sum_{i=1}^{p} d_{i}^{2}=4 \mathrm{p}+4 \mathrm{k}-10
\end{aligned}
$$

But for a path, $k=1$.

$$
\begin{aligned}
& \sum_{i=1}^{p} d_{i}^{2}=4 \mathrm{p}+4(1)-10=4 \mathrm{p}-6 \\
& \sum_{i=1}^{p} d_{i}^{2}-4 \mathrm{p}+6=0
\end{aligned}
$$

By Theorem [G], it follows that T is a non empty path. Thus necessity is proved.
For sufficiency, suppose T is a non empty path. We prove that $P_{T_{b}}(T)$ is maximal outer planar. By induction on the number of points $p_{i} \geq 2$ of T. It is easy to observe that $P_{T_{b}}(T)$ of a path P with 2 points is $K_{4}-x$, which is maximal outer planar. As the inductive hypothesis, let the pathos semitotal block graph of a non empty path P with n points be maximal outer planar. We now show that the pathos semitotal block graph of a path P^{\prime} with $(n+1)$ points is maximal outer planar. First we prove that it is outer planar. Let the point and line sequence of the path
P^{\prime} be $v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, \ldots, v_{n}, e_{n}, v_{n+1}$, Where $v_{1} v_{2}=e_{1}=b_{1}, v_{2} v_{3}=e_{2}=b_{2}, \ldots, v_{n-1} v_{n}=$ $e_{n-1}=b_{n 1}, v_{n} v_{n+1}=e_{n}=b_{n}$.

The graphs $P, P^{\prime}, T_{b}(P), T_{b}\left(P^{\prime}\right), P_{T_{b}}(P)$ and $P_{T_{b}}\left(P^{\prime}\right)$ are shown in the figure 2 . Without loss of generality $P^{\prime}-v_{n+1}=P$.

By inductive hypothesis, $P_{T_{b}}(P)$ is maximal outer planar. Now the point v_{n+1} is one more point more in $P_{T_{b}}\left(P^{\prime}\right)$ than $P_{T_{b}}(P)$. Also there are only four lines $\left(v_{n+1}, v_{n}\right)\left(v_{n}, b_{n}\right)\left(b_{n}, v_{n+1}\right)$ and $\left(v_{n+1}, K_{1}\right)$ more in $P_{T_{b}}\left(P^{\prime}\right)$. Clearly the induced subgraph on the points $v_{n+1}, v_{n}, b_{n}, K_{1}$ is not K_{4}. Hence $P_{T_{b}}\left(P^{\prime}\right)$ is outer planar.

We now prove that $P_{T_{b}}\left(P^{\prime}\right)$ is maximal outer planar. Since $P_{T_{b}}(P)$ is maximal outer planar, it has $2(2 q+k+1)-3$ lines. The outer planar graph $P_{T_{b}}\left(P^{\prime}\right)$ has $2(2 q+k+1)-3+4=$ $2(2 q+k+1+2)-3$

$$
=2[(2 q+1)+(k+1)+1]-3 \text { lines. }
$$

By Theorem $[\mathrm{F}], P_{T_{b}}\left(P^{\prime}\right)$ is maximal outer planar.
The next theorem gives a non-minimally non-outer planar $P_{T_{b}}(T)$.
Theorem 5 For any non trivial tree T, the pathos semitotal block graph $P_{T_{b}}(T)$ of a tree T is non-minimally non-outer planar.

Proof We have the following cases.
Case 1 Suppose T is a path, then $\Delta(T) \leq 2$, then by Theorem $4, P_{T_{B}}(T)$ is maximal outer planar.

Case 2 Suppose T is not a path, then $\Delta(T) \geq 3$, then by theorem $3, P_{T_{b}}(T)$ is planar. On embedding $P_{T_{b}}(T)$ in any plane, the points with degree greater than two of T forms the cut points. In $P_{T_{b}}(T)$ which lie on at least two blocks. Since each block of $P_{T_{b}}(T)$ is a maximal outer planar than one can easily verify that $P_{T_{b}}(T)$ is outer planar. Hence for any non trivial tree with $\Delta(T) \geq 3, P_{T_{b}}(T)$ is non minimally non-outer planar.

In the next theorem, we characterize the non-Eulerian $P_{T_{b}}(T)$.
Theorem 6 For any non trivial tree T, the pathos semitotal block graph $P_{T_{b}}(T)$ of a tree T is non-Eulerian.

Proof We have the following cases.
Case 1 Suppose T is a path with 2 points, then $P_{T_{b}}(T)=K_{4}-x$, which is non-Eulerian. If T is a path with $p>2$ points. Then in $T_{b}(T)$ each block is a triangle such that they are in sequence with the vertices of $T_{b}(T)$ as $\left\{v_{1}, b_{1}, v_{2}, v_{1}\right\}$ an induced subgraph as a triangle $T_{b}(T)$. Further $\left\{v_{2}, b_{2}, v_{3}, v_{2}\right\},\left\{v_{3}, b_{3}, v_{4}, v_{3}\right\}, \ldots,\left\{v_{n-1}, b_{n}, v_{n}, v_{n-1}\right\}$, in which each set form a triangle as an induced subgraph of $T_{b}(T)$. Clearly one can easily verify that $T_{b}(T)$ is Eulerian. Now this path has exactly one pathos point say k_{1}, which is adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ in $P_{T_{b}}(T)$ in which all the points $v_{1}, v_{2}, v_{3}, \ldots, v_{n} \in P_{T_{b}}(T)$ are of odd degree. Hence $P_{T_{b}}(T)$ is non-Eulerian.

Case 2 Suppose $\Delta(T) \geq 3$. Assume T has a unique point of degree ≥ 3 and also assume that $T=K_{1 . n}$. Then in $T_{b}(T)$ each block is a triangle, such that the number of blocks which are K_{3}

$T_{b}(P):$

$T_{b}\left(P^{\prime}\right):$

Figure 2:
are n with a common cut point k. Since the degree of a vertex $k=2 n$. One can easily verify that $T_{b}\left(K_{1,3}\right)$ is Eulerian. To form $P_{T_{b}}(T), T=K_{1, n}$, the points of degree 2 and the point k are joined by the corresponding pathos point which give $(n+1)$ points of odd degree in $P_{T_{b}}(T)$. Hence $P_{T_{b}}(T)$ is non-Eulerian.

In the next theorem we characterize the hamiltonian $P_{T_{b}}(T)$.

Theorem 7 For any non trivial tree T, the pathos semitotal block graph $P_{T_{b}}(T)$ of a tree T is hamiltonian if and only if T is a path.

Proof For the necessity, suppose T is a path and has exactly one path of pathos. Let $V\left[T_{b}(T)\right]=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \cup\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}\right\}$, where $b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}$ are block points of T. Since each block is a triangle and each block consists of points as $B_{1}=\left\{u_{1}, b_{1}, u_{2}\right\}, B_{2}=$ $\left\{u_{2}, b_{2}, u_{3}\right\}, \ldots, B_{m}=\left\{u_{m}, b_{m}, u_{m+1}\right\}$. In $P_{T_{b}}(T)$ the pathos point w is adjacent to $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$. Hence $V\left[P_{T_{b}}(T)\right]=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \cup\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}\right\} \cup w$ form a cycle as $w, u_{1}, b_{1}, u_{2}, b_{2}, u_{2}, \ldots$ $u_{n-1}, b_{n-1}, u_{n}, w$. Containing all the points of $P_{T_{b}}(T)$. Clearly $P_{T_{b}}(T)$ is hamiltonian. Thus necessity is proved.

For the sufficiency, suppose $P_{T_{b}}(T)$ is hamiltonian, now we consider the following cases.
Case 1 Assume T is a path. Then T has at least one point with $\operatorname{deg} v \geq 3, \forall v \in V(T)$, assume that T has exactly one point u such that degree $u>2$, then $G=T=K_{1 . n}$. Now we consider the following subcases of Case 1.

Subcase 1.1 For $K_{1 . n}, n>2$ and n is even, then in $T_{b}(T)$ each block is k_{3}. The number of path of pathos are $\frac{n}{2}$. Since n is even we get $\frac{n}{2}$ blocks. Each block contains two lines of $\left\langle K_{4}-x\right\rangle$, which is a non line disjoint subgraph of $P_{T_{b}}(T)$. Since $P_{T_{b}}(T)$ has a cut point, one can easily verify that there does not exist any hamiltonian cycle, a contradiction.

Subcase 1.2 For $K_{1 . n}, n>2$ and n is odd, then the number of path of pathos are $\frac{n+1}{2}$, since n is odd we get $\frac{n-1}{2}+1$ blocks in which $\frac{n-1}{2}$ blocks contains two times of $\left\langle K_{4}-x\right\rangle$ which is nonline disjoint subgraph of $P_{T_{b}}(T)$ and remaining block is $\left\langle K_{4}-x\right\rangle$. Since $P_{T_{b}}(T)$ contain a cut point, clearly $P_{T_{b}}(T)$ does not contain a hamiltonian cycle, a contradiction. Hence the sufficient condition.

§3. Pathos Total Block Graph of a Tree

A tree T, its total block graph $T_{B}(T)$, and their pathos total block graphs $P_{T_{B}}(T)$ are shown in the Fig.3. We start with a few preliminary results.

Remark 3 For any non trivial path, the inner point number of the pathos total block graph $P_{T_{B}}(T)$ of a tree T is equal to the number of cut points in T.

Remark 4 The degree of a pathos point in $P_{T_{B}}(T)$ is n, then the pathos length of the corresponding path P_{i} of pathos in T is $n-1$.

Remark 5 For any non trivial tree $T, P_{T_{B}}(T)$ is a block.

has been expressed in terms of blocks of G. Now using this we have a modified theorem as shown below in which we have expressed the number of points and lines in terms of lines and degrees of the points of G which is a tree.

Theorem 8 For any non trivial (p, q) tree whose points have degree d_{i}, the number of points and lines in total block graph of a tree T are $(2 q+1)$ and $\left(2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$.

Proof By Theorem [B], the number of points in $T_{b}(T)$ is $\left(\sum_{i=1}^{b} b_{i}\right)+1$, where b_{i} are the number of blocks in T to which the points v_{i} belongs in G. Since $\sum b_{i}=2 q$, for G is a tree. Thus the number of points in $T_{B}(G)=2 q+1$. Also, by Theorem [B], the number of lines in $T_{B}(G)$ are $q+\sum_{i=1}^{b}\binom{b_{i}+1}{2}=\left(\sum_{i=1}^{b} b_{i}\right)+\left(\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)=\left(2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$, for G is a tree.

In the following theorem we obtain the number of points and lines in $P_{T_{B}}(T)$.

Theorem 9 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T, whose points have degree d_{i}, then the number of points in $P_{T_{B}}(T)$ are $(2 q+k+1)$ and the number of lines are $\left(q+2+\sum_{i=1}^{p} d_{i}^{2}\right)$, where k is the path number.

Proof By Theorem 7, the number of points in $T_{B}(T)$ are $2 q+1$, and by definition of $P_{T_{B}}(T)$, the number of points in $P_{T_{B}}(T)$ are $(2 q+k+1)$, where k is the path number in T. Also by Theorem 7 , the number of lines in $T_{B}(T)$ are $\left(2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$. The number of lines in $P_{T_{B}}(T)$ is the sum of lines in $T_{B}(T)$ and the number of lines which lie on the points of pathos of T which are to $\left(-q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$. Thus the number of lines in $P_{T_{B}}(T)$ is equal to $\left(2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)+\left(-q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)=\left(q+2+\sum_{i=1}^{p} d_{i}^{2}\right)$.

§4. Planar Pathos Total Block Graphs

A criterion for pathos total block graph to be planar is presented in our next theorem.

Theorem 10 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T is planar if and only if $\Delta(T) \leq 3$.

Proof Suppose $P_{T_{B}}(T)$ is planar. Then by Theorem [C], each cut point of T lie on at most 3 blocks. Since each block is a line in a tree, now we can consider the degree of cutpoints instead of number of blocks incident with the cut points. Now suppose if $\Delta(T) \leq 3$, then by Theorem [C], $T_{B}(T)$ is planar. Let $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{p-1}\right\}$ be the blocks of T with p points such that $b_{1}=e_{1}, b_{2}=e_{2}, \ldots, b_{p-1}=e_{p-1}$ and P_{i} be the number of pathos of T. Now $V\left[P_{T_{B}}(T)\right]=V(G) \cup\left\{b_{1}, b_{2}, \ldots b_{p-1}\right\} \cup\left\{P_{i}\right\}$. By Theorem [C], and by the definition of pathos, the embedding of $P_{T_{B}}(T)$ in any plane gives a planar $P_{T_{B}}(T)$.

Suppose $\Delta(T) \geq 4$ and assume that $P_{T_{B}}(T)$ is planar. Then there exists at least one point
of degree 4, assume that there exists a vertex v such that $\operatorname{deg} v=4$. Then in $T_{B}(T)$, this point together with the block points form k_{5} as an induced subgraph. Further the corresponding pathos point are adjacent to the $\mathrm{V}(\mathrm{T})$ in $T_{B}(T)$ which gives $P_{T_{B}}(T)$ in which again k_{5} as an induced subgraph, a contradiction to the planarity of $P_{T_{B}}(T)$. This completes the proof.

The following theorem results the maximal outer planar $P_{T_{B}}(T)$.
Theorem 11 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T is maximal outer planar if and only if $T=k_{2}$.

Proof Suppose $T=k_{3}$ and $P_{T_{B}}(T)$ is maximal outer planar. Then $T_{B}(T)=k_{4}$ and one can easily verify that, $i\left[P_{T_{B}}(T)\right]>1$, a contradiction. Further we assume that $T=K_{1,2}$ and $P_{T_{B}}(T)$ is maximal outer planar, then $T_{B}(T)$ is $W_{p}-x$, where x is outer line of W_{p}. Since $K_{1,2}$ has exactly one pathos, this point together with $W_{p}-x$ gives W_{p+1}. Clearly, $P_{T_{B}}(T)$ is non maximal outer planar, a contradiction. For the converse, if $T=k_{2}, T_{B}(T)=k_{3}$ and $P_{T_{B}}(T)$ $=K_{4}-x$ which is a maximal outer planar. This completes the proof of the theorem.

Now we have a pathos total block graph of a path $p \geq 2$ point as shown in the below remarks, and also a cycle with $p \geq 3$ points.

Remark 6 For any non trivial path with p points, $i\left[P_{T_{B}}(T)\right]=p-2$.
Remark 7 For any cycle $C_{p}, p \geq 3, i\left[P_{T_{B}}\left(C_{p}\right)\right]=p-1$.
The next theorem gives a minimally non-outer planar $P_{T_{B}}(T)$.

Theorem 12 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T is minimally non-outer planar if and only if T is a path with 3 points.

Proof Suppose $P_{T_{B}}(T)$ is minimally non-outer planar. Assume T is not a path. We consider the following cases.

Case 1 Suppose T is a tree with $\Delta(T) \geq 3$. Then there exists at least one point of degree at least 3. Assume v be a point of degree 3. Clearly, $T=K_{1,3}$. Then by the Theorem [D], $i\left[T_{B}(T)\right]>1$ since $T_{B}(T)$ is a subgraph of $P_{T_{B}}(T)$. Clearly $i\left[P_{T_{B}}(T)\right] \geqslant 2$ a contradiction.

Case 2 Suppose T is a closed path with p points, then it is a cycle with p points. By Theorem $[\mathrm{D}], P_{T_{B}}(T)$ is minimally non-outer planar. By Remark $7, i\left[P_{T_{B}}(T)\right]>1$, a contradiction.

Case 3 Suppose T is a closed path with $p \geq 4$ points, clearly by Remark $6, i\left[P_{T_{B}}(T)\right]>2$, a contradiction.

Conversely, suppose T is a path with 3 points, clearly by Remark $6, i\left[P_{T_{B}}(T)\right]=1$. This gives the required result.

In the following theorem we characterize the non-Eulerian $P_{T_{B}}(T)$.
Theorem 13 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T is non-Eulerian.

Proof We consider the following cases.
Case 1 Suppose T is a path. For $p=2$ points, then $P_{T_{B}}(T)=K_{4}-x$, which is non-Eulerian. For $p=3$ points, then $P_{T_{B}}(T)$ is a wheel, which is non-Eulerian.

For $p \geq 4$ we have a path $P: v_{1}, v_{2}, v_{3}, \ldots, v_{p}$. Now in path each line is a block. Then $v_{1} v_{2}=e_{1}=b_{1}, v_{2} v_{3}=e_{2}=b_{2}, \ldots, v_{p-1} v_{p}=e_{p-1}=b_{p-1}, \forall e_{p-1} \in E(G)$, and $\forall b_{p-1} \in$ $V\left[T_{B}(P)\right]$. In $T_{B}(P)$, the degree of each point is even except b_{1} and b_{p-1}. Since the path P has exactly one pathos which is a point of $P_{T_{B}}(P)$ and is adjacent to the points $v_{1}, v_{2}, v_{3}, \ldots, v_{p}$, of $T_{B}(P)$ which are of even degree, gives as an odd degree points in $P_{T_{B}}(P)$ including odd degree points b_{1} and b_{2}. Clearly $P_{T_{B}}(P)$ is non-Eulerian.

Case 2 Suppose T is not a path. We consider the following subcases,
Subcase 2.1 Assume T has a unique point degree ≥ 3 and $T=K_{1 . n}$, where n is odd. Then in $T_{B}(T)$ each block is a triangle such that there are n number of triangles with a common cut point k which has a degree $2 n$. Since the degree of each point in $T_{B}\left(K_{1, n}\right)$ is Eulerian. To form $P_{T_{B}}(T)$ where $T=K_{1, n}$, the points of degree 2 and the point k are joined by the corresponding pathos point which gives $(n+1)$ points of odd degree in $P_{T_{B}}\left(K_{1 . n}\right) . P_{T_{B}}\left(K_{1 . n}\right)$ has n points of odd degree. Hence $P_{T_{B}}(T)$ non-Eulerian.

Assume that $T=K_{1 . n}$, where n is even, then in $T_{B}(T)$ each block is a triangle, which are $2 n$ in number with a common cut point k. Since the degree of each point other than k is either 2 or $(n+1)$ and the degree of the point k is $2 n$. One can easily verify that $T_{B}\left(K_{1, n}\right)$ is non-Eulerian. To form $P_{T_{B}}(T)$ where $T=K_{1, n}$, the points of degree 2 and the point k are joined by the corresponding pathos point which gives $(n+2)$ points of odd degree in $P_{T_{B}}(T)$. Hence $P_{T_{B}}(T)$ non-Eulerian.

Subcase 2.2 Assume T has at least two points of degree ≥ 3. Then $V\left[T_{B}(T)\right]=V(G) \cup$ $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{p}\right\}, \forall e_{p} \in E(G)$. In $T_{B}(T)$, each endpoint has degree 2 and these points are adjacent to the corresponding pathos points in $P_{T_{B}}(T)$ gives degree 3, From Case 1, Tree T has at least 4 points and by Corollary [A], $P_{T_{B}}(T)$ has at least two points of degree 3 . Hence $P_{T_{B}}(T)$ is non-Eulerian.

In the next theorem we characterize the hamiltonian $P_{T_{B}}(T)$.
Theorem 14 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T is hamiltonian.

Proof We consider the following cases.
Case 1 Suppose T is a path with $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \in V(T)$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$ be the number of blocks of T such that $m=n-1$. Then it has exactly one path of pathos. Now point set of $T_{B}(T)$ is $V\left[T_{B}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. Since given graph is a path then in $T_{B}(T), b_{1}=e_{1}, b_{2}=e_{2}, \ldots, b_{m}=e_{m}$, such that $b_{1}, b_{2}, b_{3}, \ldots, b_{m} \subset V\left[T_{B}(T)\right]$. Then by the definition of total block graph $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{m-1}, b_{m}\right\} \cup\left\{b_{1}, u_{1}, b_{2} u_{2}, \ldots, b_{m} u_{n-1}\right.$, $\left.b_{m} u_{n}\right\}$ form line set of $T_{B}(T)$ [see Fig. 4].

Now this path has exactly one pathos say w. In forming pathos total block graph of a path, the pathos w becomes a point, then $V\left[P_{T_{B}}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{m}\right\} \cup\{w\}$ and

Figure 4:
w is adjacent to all the points $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ shown in the Fig.5.

Figure 5:

In $P_{T_{B}}(T)$, the hamiltonian cycle $w, u_{1}, b_{1}, u_{2}, b_{2}, u_{2}, u_{3}, b_{3}, \ldots, u_{n-1}, b_{m}, u_{n}, w$ exist. Clearly the pathos total block graph of a path is hamiltonian graph.

Case 2 Suppose T is not a path. Then T has at least one point with degree at least 3. Assume that T has exactly one point u such that degree >2. Now we consider the following subcases of case 2 .

Subcase 2.1 Assume $T=K_{1 . n}, n>2$ and is odd. Then the number of paths of pathos are $\frac{n+1}{2}$. Let $V\left[T_{B}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}, b_{1}, b_{2}, \ldots, b_{m-1}\right\}$. By the definition of $P_{T_{B}}(T)$, $V\left[P_{T_{B}}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}, b_{1} b_{2}, \ldots, b_{n-1}\right\} \cup\left\{p_{1}, p_{2}, \ldots, p_{n+1 / 2}\right\}$. Then there exists a cycle containing the points of $P_{T_{B}}(T)$ as $p_{1}, u_{1}, b_{1}, b_{2}, u_{3}, p_{2}, u_{2}, b_{3}, u_{4}, \ldots p_{1}$ and is a hamiltonian cycle. Hence $P_{T_{B}}(T)$ is a hamiltonian.

Subcase 2.2 Assume $T=K_{1 . n}, n>2$ and is even. Then the number of path of pathos are $\frac{n}{2}$, then $V\left[T_{B}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}, b_{1}, b_{2}, \ldots b_{n-1}\right\}$. By the definition of $P_{T_{B}}(T) . V\left[P_{T_{B}}(T)\right]=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}, b_{1}, b_{2}, \ldots, b_{n-1}\right\} \cup\left\{p_{1}, p_{2}, \ldots, p_{n / 2}\right\}$. Then there exist a cycle containing the points of $P_{T_{B}}(T)$ as $p_{1}, u_{1}, b_{1}, b_{2}, u_{3}, p_{2}, u_{4}, b_{3}, b_{4}, \ldots, p_{1}$ and is a hamiltonian cycle. Hence $P_{T_{B}}(T)$ is a hamiltonian.

Suppose T is neither a path or a star. Then T contains at least two points of degree >2. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the points of degree ≥ 2 and $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ be the end points of T. Since end block is a line in T, and denoted as $b_{1}, b_{2}, \ldots, b_{k}$, then tree T has p_{i} pathos points, $i>1$ and each pathos point is adjacent to the point of T where the corresponding pathos lie on the points of T. Let $\left\{p_{1}, p_{2}, \ldots ., p_{i}\right\}$ be the pathos points of T. Then there exists a cycle C containing all the points of $P_{T_{B}}(T)$ as $p_{1}, v_{1}, b_{1}, b_{2}, v_{2}, p_{2}, u_{1}, b_{3}, u_{2}, p_{3}, v_{3}, b_{4}, \ldots, v_{n-1}, b_{n-1}, b_{n}, v_{n}, \ldots, p_{1}$. Hence $P_{T_{B}}(T)$ is a hamiltonian cycle. Hence $P_{T_{B}}(T)$ is a hamiltonian graph.

In the next theorem we characterize $P_{T_{B}}(T)$ in terms of crossing number one.
Theorem 15 For any non trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree T has crossing number one if and only if $\Delta(T) \leq 4$, and there exist a unique point in T of degree 4.

Proof Suppose $P_{T_{B}}(T)$ has crossing number one. Then it is non-planar. Then by Theorem 10, we have $\Delta(T) \geq 4$. We now consider the following cases.

Case 1 Assume $\Delta(T)=5$. Then by Theorem [E], $T_{B}(T)$ is non-planar with crossing number more than one. Since $T_{B}(T)$ is a subgraph of $P_{T_{B}}(T)$. Clearly $\operatorname{cr}\left(P_{T_{B}}(T)\right)>1$, a contradiction.

Case 2 Assume $\Delta(T)=4$. Suppose T has two points of degree 4. Then by Theorem [E], $T_{B}(T)$ has crossing number at least two. But $T_{B}(T)$ is a subgraph of $P_{T_{B}}(T)$. Hence $\operatorname{cr}\left(P_{T_{B}}(T)\right)>1$, a contradiction.

Conversely, suppose T satisfies the given condition and assume T has a unique point v of degree 4. The lines which are blocks in T such that they are the points in $T_{B}(T)$. In $T_{B}(T)$, these block points and a point v together forms an induced subgraph as k_{5}. In forming $P_{T_{B}}(T)$, the pathos points are adjacent to at most two points of this induced subgraph. Hence in all these cases the $\operatorname{cr}\left(P_{T_{B}}(T)\right)=1$. This completes the proof.

References

[1] Harary F., Graph Theory, Addison-Wesley Reading. Mass. (1969), pp 34 and 107.
[2] Harary F., Covering and packing in graphs I, Annals of New York Academy of Science, (1970), pp 198-205.
[3] Harary F. R. and Schwenk A. J., Evolution of the path number of a graph, covering and packing in graphs II, Graph Theory and Computing, Ed. R. C. Read, Academic Press, New York (1972), pp 39-45.
[4] Kulli V. R., On minimally non-outer planar graphs, Proceeding of the Indian National Science Academy, Vol.41, Part A, No.3, (1975), pp 275-280.
[5] Kulli V. R. A Characterization of Paths, Vol.9, No.1, The Maths Education, (1975), pp 1-2.
[6] Kulli V. R., The semitotal-block graph and total-block graph of a graph, Indian J. Pure and App. Math., Vol.7, No. 6 (1976), pp 625-630.
[7] Kulli V. R. and Patil H. P., Minimally non-outer planar graphs and some graph valued functions, Journal of Karnataka University Science, (1976), pp 123-129.
[8] Kulli V. R. and Akka D. R., Transversability and planarity of total block graphs, J. Math.

Phy. Sci., (1977) Vol.11, pp 365-375.
[9] Kulli V. R. and Muddebihal M. H., Total block graphs and semitotal block graphs with crossing numbers, Far East J.Appl. Math., 4(1), (2000), pp 99-106.
[10] Muddebihal M. H., Gudagudi B. R. and Chandrasekhar R., On pathos line graph of a tree, National Academy Science Letters, Vol.24, No. 5 to 12(2001), pp 116-123.
[11] Stanton R. G., Cowan D. D. and James L. O., Some results on the path numbers, Proceedings of Lousiana Conference on Combinatorics, Graph Theory and Computing, (1970), pp 112- 135.

[^0]: ${ }^{1}$ Received November 23, 2010. Accepted May 26, 2011.

