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Abstract: In this communications, the concept of pathos semitotal and total block graph

of a graph is introduced. Its study is concentrated only on trees. We present a characteriza-

tion of those graphs whose pathos semitotal block graphs are planar, maximal outer planar,

non-minimally non-outer planar, non-Eulerian and hamiltonian. Also, we present a char-

acterization of graphs whose pathos total block graphs are planar, maximal outer planar,

minimally non-outer planar, non-Eulerian, hamiltonian and graphs with crossing number

one.
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§1. Introduction

The concept of pathos of a graph G was introduced by Harary [2], as a collection of minimum

number of line disjoint open paths whose union is G. The path number of a graph G is the

number of paths in pathos. A new concept of a graph valued functions called the semitotal

and total block graph of a graph was introduced by Kulli [6]. For a graph G(p, q) if B =

{u1, u2, u3, . . . , ur; r ≥ 2} is a block of G, then we say that point u1 and block B are incident

with each other, as are u2 and B and so on. If two distinct blocks B1 and B2 are incident with

a common cut point, then they are adjacent blocks. The points and blocks of a graph are called

its members. A Smarandachely block graph T V
S (G) for a subset V ⊂ V (G) is such a graph with

vertices V ∪ B in which two points are adjacent if and only if the corresponding members of G

are adjacent in 〈V 〉G or incident in G, where B is the set of blocks of G. The semitotal block

graph of a graph G denoted by Tb(G) is defined as the graph whose point set is the union of

set of points, set of blocks of G in which two points are adjacent if and only if members of G

are incident, thus a Smarandachely block graph with V = ∅. The total block graph of a graph
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G denoted by TB(G) is defined as the graph whose point set is the union of set of points, set

of blocks of G in which two points are adjacent if and only if the corresponding members of G

are adjacent or incident, i.e., a Smarandachely block graph with V = V (G). Stanton [11] and

Harary [3] have calculated the path number for certain classes of graphs like trees and complete

graphs.

All undefined terminology will conform with that in Harary [1]. All graphs considered here

are finite, undirected and without loops or multiple lines.

The pathos semitotal block graph of a tree T denoted by PTB
(T ) is defined as the graph

whose point set is the union of set of points, set of blocks and the set of path of pathos of T in

which two points are adjacent if and only if the corresponding members of G are incident and

the lines lie on the corresponding path Pi of pathos. Since the system of pathos for a tree is

not unique, the corresponding pathos semitotal and pathos total block graph of a tree T is also

not unique.

In Fig.1, a tree T , its semitotal block graph Tb(T ) and their pathos semi total block PTb
(T )

graph are shown. In Fig. 2, a tree T , its semitotal block graph Tb(T ) and their pathos total

block PTB
(T ) graph are shown.

The line degree of a line uv in a tree T , pathos length, pathos point in T was defined by

Muddebihal [10]. If G is planar, the inner point number i(G) of a graph G is the minimum

number of points not belonging to the boundary of the exterior region in any embedding of G

in the plane. A graph G is said to be minimally nonouterplanar if i(G) = 1, as was given by

Kulli [4].

We need the following results to prove further results.

Theorem [A][Ref.6] If G is connected graph with p points and q lines and if bi is the number

of blocks to which vi belongs in G, then the semitotal block graph Tb(G) has

(
p∑

i=1

bi

)
+1, points

and q +

(
p∑

i=1

bi

)
lines.

Theorem [B][Ref.6] If G is connected graph with p points and q lines and if bi is the number

of blocks to which vi belongs in G, then the total block graph TB(G) has

(
p∑

i=1

bi

)
+ 1, points

and q +
p∑

i=1



bi + 1

2



 lines.

Theorem [C][Ref.8] The total block graph TB(G) of a graph G is planar if and only if G is

outerplanar and every cutpoint of G lies on atmost three blocks.

Theorem [D] [Ref.7] The total block graph TB(G) of a connected graph G is minimally

nonouter planar if and only if,

(1) G is a cycle, or

(2) G is a path P of length n ≥ 2, together with a point which is adjacent to any two adjacent

points of P .
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Figure 1:

Theorem [E][Ref.9] The total block graph TB(G) of a graph G crossing number 1 if and only

if

(1) G is outer planar and every cut point in G lies on at most 4 blocks and G has a unique

cut point which lies on 4 blocks, or

(2) G is minimally non-outer planar, every cut point of G lies on at most 3 blocks and exactly

one block of G is theta-minimally non-outer planar.

Corollary [A][Ref.1] Every nontrivial tree contains at least two end points.

Theorem [F][Ref.1] Every maximal outerplanar graph G with p points has (2p− 3) lines.

Theorem [G][Ref.5] A graph G is a non empty path if and only if it is connected graph with

p ≥ 2 points and
p∑

i=1

di
2 − 4p+ 6 = 0.

§2. Pathos Semitotal Block Graph of a Tree

We start with a few preliminary results.
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Remark 1 The number of blocks in pathos semitotal block graph of PTb
(T ) of a tree T is equal

to the number of pathos in T .

Remark 2 If the degree of a pathos point in pathos semi total block graph PTb
(T ) of a tree T

is n, then the pathos length of the corresponding path Pi of pathos in T is n− 1.

Kulli [6] developed the new concept in graph valued functions i.e., semi total and total

block graph of a graph. In this article the number of points and lines of a semi total block

graph of a graph has been expressed in terms of blocks of G. Now using this we have a modified

theorem as shown below in which we have expressed the number of points and lines in terms

of lines and degrees of the points of G which is a tree.

Theorem 1 For any (p, q) tree T , the semitotal block graph Tb(T ) has (2q + 1) points and 3q

lines.

Proof By Theorem [A], the number of points in Tb(G) is

(
p∑

i=1

bi

)
+ 1, where bi are the

number of blocks in T to which the points vi belongs in G. Since
∑
bi = 2q, for G is a tree.

Thus the number of points in Tb(G) = 2q + 1. Also, by Theorem [A] the number of lines in

Tb(G) are q +

(
b∑

i=1

bi

)
, since

∑
bi = 2q for G is a tree. Thus the number of lines in Tb(G) is

q + 2q = 3q. �

In the following theorem we obtain the number of points and lines in PTb
(T ).

Theorem 2 For any non trivial tree T , the pathos semitotal block graph of a tree T , whose

points have degree di, then the number of points in PTb
(T ) are (2q + k + 1) and the number of

lines are

(
2q + 2 +

1

2

p∑
i=1

d2
i

)
, where k is the path number.

Proof By Theorem 1, the number of points in Tb(T ) are 2q+1, and by definition of PTb
(T ),

the number of points in (2q+k+1), where k is the path number. Also by Theorem 1, the number

of lines in Tb(T ) are 3q. The number of lines in PTb
(T ) is the sum of lines in Tb(T ) and the

number of lines which lie on the points of pathos of T which are to

(
−q + 2 +

1

2

p∑
i=1

d2
i

)
. Thus

the number of lines in is equal to

(
3q + (−q + 2 +

1

2

p∑
i=1

d2
i )

)
=

(
2q + 2 +

1

2

p∑
i=1

d2
i

)
.

§2. Planar Pathos Semitotal Block Graphs

A criterion for pathos semi total block graph to be planar is presented in our next theorem.

Theorem 3 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

planar.

Proof Let T be a non trivial tree, then in Tb(T ) each block is a triangle. We have the

following cases.

Case 1 Suppose G is a path, G = Pn : u1, u2, u3, . . . , un, n > 1. Further, V [Tb (T )] =
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{u1, u2, u3, . . . , un, b1, b2, b3, . . . , bn−1}, where b1, b2, b3, . . . , bn−1 are the corresponding block

points. In pathos semi total block graph PTb
(T ) of a tree T , {u1b1u2w, u2b2u3w, u3b3u4w, . . . ,

un−1bn−1unw} ∈ V [PTb
(T )], each set {un−1bn−1unw} forms an induced subgraph as K4 − x.

Hence one can easily verify that PTb
(T ) is planar.

Case 2 Suppose G is not a path. Then V [Tb (G)] = {u1, u2, u3, . . . , un, b1, b2, b3, . . . , bn−1} and

w1, w2, w3, . . . , wk be the pathos points. Since un−1un is a line and un−1un = bn−1 ∈ V [Tb (G)].

Then in PTb
(G) the set {un−1bn−1unw} ∀ n > 1, forms K4−x as an induced subgraphs. Hence

PTb
(G) is planar. �

Further we develop the maximal outer planarity of PTb
(G) in the following theorem.

Theorem 4 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

maximal outer planar if and only if T is a path.

Proof Suppose PTb
(T ) is maximal outer planar. Then PTb

(T ) is connected. Hence T is

connected. If PTb
(T ), is K4 − x, then obviously T is k2.

Let T be any connected tree with p ≥ 2, q lines bi blocks and path number k, then clearly

PTb
(T ) has (2q + k + 1) points and

(
2q + 2 +

1

2

p∑
i=1

d2
i

)
lines. Since PTb

(T ) is maximal outer

planar, by Theorem [F], it has [2(2q + k + 1) − 3] lines. Hence,

2 + 2q +
1

2

p∑

i=1

d2
i = 2 (2q + k + 1) − 3 = 4q + 2k + 2 − 3 = 4q + 2q− 1

1

2

p∑

i=1

d2
i = 2q + 2k − 3

p∑

i=1

d2
i = 4q + 4k − 6

p∑

i=1

d2
i = 4 (p − 1) + 4k− 6

p∑

i=1

d2
i = 4p + 4k − 10.

But for a path, k = 1.
p∑

i=1

d2
i = 4p + 4 (1) − 10 = 4p − 6

p∑

i=1

d2
i − 4p + 6 = 0.

By Theorem [G], it follows that T is a non empty path. Thus necessity is proved.

For sufficiency, suppose T is a non empty path. We prove that PTb
(T ) is maximal outer

planar. By induction on the number of points pi ≥ 2 of T . It is easy to observe that PTb
(T ) of a

path P with 2 points is K4−x, which is maximal outer planar. As the inductive hypothesis, let

the pathos semitotal block graph of a non empty path P with n points be maximal outer planar.

We now show that the pathos semitotal block graph of a path P ′ with (n+1) points is maximal

outer planar. First we prove that it is outer planar. Let the point and line sequence of the path
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P ′ be v1, e1, v2, e2, v3, . . . , vn, en, vn+1, Where v1v2 = e1 = b1, v2v3 = e2 = b2, . . . , vn−1vn =

en−1 = bn1, vnvn+1 = en = bn.

The graphs P, P ′, Tb(P ), Tb(P
′), PTb

(P ) and PTb
(P ′) are shown in the figure 2. Without

loss of generality P ′ − vn+1 = P .

By inductive hypothesis, PTb
(P ) is maximal outer planar. Now the point vn+1 is one more

point more in PTb
(P ′) than PTb

(P ). Also there are only four lines (vn+1, vn)(vn, bn)(bn, vn+1)

and (vn+1,K1) more in PTb
(P ′). Clearly the induced subgraph on the points vn+1, vn, bn,K1

is not K4. Hence PTb
(P ′) is outer planar.

We now prove that PTb
(P ′) is maximal outer planar. Since PTb

(P ) is maximal outer planar,

it has 2(2q + k + 1) − 3 lines. The outer planar graph PTb
(P ′) has 2(2q + k + 1) − 3 + 4 =

2(2q + k + 1 + 2) − 3

= 2 [(2q + 1) + (k + 1) + 1] − 3 lines.

By Theorem [F], PTb
(P ′) is maximal outer planar. �

The next theorem gives a non-minimally non-outer planar PTb
(T ).

Theorem 5 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

non-minimally non-outer planar.

Proof We have the following cases.

Case 1 Suppose T is a path, then ∆(T ) ≤ 2, then by Theorem 4, PTB
(T ) is maximal outer

planar.

Case 2 Suppose T is not a path, then ∆(T ) ≥ 3, then by theorem 3, PTb
(T ) is planar. On

embedding PTb
(T ) in any plane, the points with degree greater than two of T forms the cut

points. In PTb
(T ) which lie on at least two blocks. Since each block of PTb

(T ) is a maximal

outer planar than one can easily verify that PTb
(T ) is outer planar. Hence for any non trivial

tree with ∆(T ) ≥ 3, PTb
(T ) is non minimally non-outer planar. �

In the next theorem, we characterize the non-Eulerian PTb
(T ).

Theorem 6 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

non-Eulerian.

Proof We have the following cases.

Case 1 Suppose T is a path with 2 points, then PTb
(T ) = K4−x, which is non-Eulerian. If T is

a path with p > 2 points. Then in Tb(T ) each block is a triangle such that they are in sequence

with the vertices of Tb(T ) as {v1, b1, v2, v1} an induced subgraph as a triangle Tb(T ). Further

{v2, b2, v3, v2}, {v3, b3, v4, v3}, . . . , {vn−1, bn, vn, vn−1}, in which each set form a triangle as an

induced subgraph of Tb(T ). Clearly one can easily verify that Tb(T ) is Eulerian. Now this path

has exactly one pathos point say k1, which is adjacent to v1, v2, v3, . . . , vn in PTb
(T ) in which

all the points v1, v2, v3, . . . , vn ∈ PTb
(T ) are of odd degree. Hence PTb

(T ) is non-Eulerian.

Case 2 Suppose ∆(T ) ≥ 3. Assume T has a unique point of degree ≥ 3 and also assume that

T = K1.n. Then in Tb(T ) each block is a triangle, such that the number of blocks which are K3
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are n with a common cut point k. Since the degree of a vertex k = 2n. One can easily verify

that Tb (K1,3) is Eulerian. To form PTb
(T ), T = K1,n, the points of degree 2 and the point k

are joined by the corresponding pathos point which give (n+1) points of odd degree in PTb
(T ).

Hence PTb
(T ) is non-Eulerian. �

In the next theorem we characterize the hamiltonian PTb
(T ).

Theorem 7 For any non trivial tree T , the pathos semitotal block graph PTb
(T ) of a tree T is

hamiltonian if and only if T is a path.

Proof For the necessity, suppose T is a path and has exactly one path of pathos. Let

V [Tb (T )] = {u1, u2, u3, . . . , un}∪{b1, b2, b3, . . . , bn−1}, where b1, b2, b3, . . . , bn−1 are block points

of T . Since each block is a triangle and each block consists of points as B1 = {u1, b1, u2}, B2 =

{u2, b2, u3}, . . . , Bm = {um, bm, um+1}. In PTb
(T ) the pathos point w is adjacent to {u1, u2, u3, . . . , un}.

Hence V [PTb
(T )] = {u1, u2, u3, . . . , un}∪{b1, b2, b3, . . . , bn−1}∪w form a cycle asw, u1, b1, u2, b2, u2, . . .

un−1, bn−1, un, w. Containing all the points of PTb
(T ). Clearly PTb

(T ) is hamiltonian. Thus

necessity is proved.

For the sufficiency, suppose PTb
(T ) is hamiltonian, now we consider the following cases.

Case 1 Assume T is a path. Then T has at least one point with deg v ≥ 3, ∀v ∈ V (T ),

assume that T has exactly one point u such that degree u > 2, then G = T = K1.n. Now we

consider the following subcases of Case 1.

Subcase 1.1 For K1.n, n > 2 and n is even, then in Tb(T ) each block is k3. The number

of path of pathos are n
2 . Since n is even we get n

2 blocks. Each block contains two lines of

〈K4 − x〉 , which is a non line disjoint subgraph of PTb
(T ). Since PTb

(T ) has a cut point, one

can easily verify that there does not exist any hamiltonian cycle, a contradiction.

Subcase 1.2 For K1.n, n > 2 and n is odd, then the number of path of pathos are
n+ 1

2
, since

n is odd we get
n− 1

2
+ 1 blocks in which

n− 1

2
blocks contains two times of 〈K4 − x〉 which

is nonline disjoint subgraph of PTb
(T ) and remaining block is 〈K4 − x〉. Since PTb

(T ) contain

a cut point, clearly PTb
(T ) does not contain a hamiltonian cycle, a contradiction. Hence the

sufficient condition.

§3. Pathos Total Block Graph of a Tree

A tree T , its total block graph TB (T ), and their pathos total block graphs PTB
(T ) are shown

in the Fig.3. We start with a few preliminary results.

Remark 3 For any non trivial path, the inner point number of the pathos total block graph

PTB
(T ) of a tree T is equal to the number of cut points in T .

Remark 4 The degree of a pathos point in PTB
(T ) is n, then the pathos length of the

corresponding path Pi of pathos in T is n− 1.

Remark 5 For any non trivial tree T , PTB
(T ) is a block.
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has been expressed in terms of blocks of G. Now using this we have a modified theorem as

shown below in which we have expressed the number of points and lines in terms of lines and

degrees of the points of G which is a tree.

Theorem 8 For any non trivial (p, q) tree whose points have degree di, the number of points

and lines in total block graph of a tree T are (2q + 1) and

(
2q +

1

2

p∑
i=1

d2
i

)
.

Proof By Theorem [B], the number of points in Tb(T ) is

(
b∑

i=1

bi

)
+ 1, where bi are the

number of blocks in T to which the points vi belongs in G. Since
∑
bi = 2q, for G is a tree.

Thus the number of points in TB(G) = 2q + 1. Also, by Theorem [B], the number of lines in

TB(G) are q +
b∑

i=1



bi + 1

2



 =

(
b∑

i=1

bi

)
+

(
1

2

p∑
i=1

d2
i

)
=

(
2q +

1

2

p∑
i=1

d2
i

)
, for G is a tree. �

In the following theorem we obtain the number of points and lines in PTB
(T ).

Theorem 9 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T , whose

points have degree di, then the number of points in PTB
(T ) are (2q + k+ 1) and the number of

lines are

(
q + 2 +

p∑
i=1

d2
i

)
, where k is the path number.

Proof By Theorem 7, the number of points in TB(T ) are 2q + 1, and by definition of

PTB
(T ), the number of points in PTB

(T ) are (2q + k + 1), where k is the path number in T .

Also by Theorem 7, the number of lines in TB(T ) are

(
2q +

1

2

p∑
i=1

d2
i

)
. The number of lines

in PTB
(T ) is the sum of lines in TB(T ) and the number of lines which lie on the points of

pathos of T which are to

(
−q + 2 +

1

2

p∑
i=1

d2
i

)
. Thus the number of lines in PTB

(T ) is equal to
(

2q +
1

2

p∑
i=1

d2
i

)
+

(
−q + 2 +

1

2

p∑
i=1

d2
i

)
=

(
q + 2 +

p∑
i=1

d2
i

)
. �

§4. Planar Pathos Total Block Graphs

A criterion for pathos total block graph to be planar is presented in our next theorem.

Theorem 10 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

planar if and only if ∆(T ) ≤ 3.

Proof Suppose PTB
(T ) is planar. Then by Theorem [C], each cut point of T lie on at

most 3 blocks. Since each block is a line in a tree, now we can consider the degree of cutpoints

instead of number of blocks incident with the cut points. Now suppose if ∆(T ) ≤ 3, then

by Theorem [C], TB(T ) is planar. Let {b1, b2, b3, . . . , bp−1} be the blocks of T with p points

such that b1 = e1, b2 = e2, . . . , bp−1 = ep−1 and Pi be the number of pathos of T . Now

V [PTB
(T )] = V (G)∪ {b1, b2, . . . bp−1}∪ {Pi}. By Theorem [C], and by the definition of pathos,

the embedding of PTB
(T ) in any plane gives a planar PTB

(T ).

Suppose ∆(T ) ≥ 4 and assume that PTB
(T ) is planar. Then there exists at least one point
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of degree 4, assume that there exists a vertex v such that deg v = 4. Then in TB(T ), this point

together with the block points form k5 as an induced subgraph. Further the corresponding

pathos point are adjacent to the V(T) in TB(T ) which gives PTB
(T ) in which again k5 as an

induced subgraph, a contradiction to the planarity of PTB
(T ). This completes the proof. �

The following theorem results the maximal outer planar PTB
(T ).

Theorem 11 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

maximal outer planar if and only if T = k2.

Proof Suppose T = k3 and PTB
(T ) is maximal outer planar. Then TB(T ) = k4 and one

can easily verify that, i[PTB
(T )] > 1, a contradiction. Further we assume that T = K1,2 and

PTB
(T ) is maximal outer planar, then TB (T ) is Wp−x, where x is outer line of Wp. Since K1,2

has exactly one pathos, this point together with Wp − x gives Wp+1. Clearly, PTB
(T ) is non

maximal outer planar, a contradiction. For the converse, if T = k2, TB (T ) = k3 and PTB
(T )

= K4 − x which is a maximal outer planar. This completes the proof of the theorem. �

Now we have a pathos total block graph of a path p ≥ 2 point as shown in the below

remarks, and also a cycle with p ≥ 3 points.

Remark 6 For any non trivial path with p points, i[PTB
(T )] = p − 2.

Remark 7 For any cycle Cp, p ≥ 3, i[PTB
(Cp)] = p − 1.

The next theorem gives a minimally non-outer planar PTB
(T ).

Theorem 12 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

minimally non-outer planar if and only if T is a path with 3 points.

Proof Suppose PTB
(T ) is minimally non-outer planar. Assume T is not a path. We

consider the following cases.

Case 1 Suppose T is a tree with ∆(T ) ≥ 3. Then there exists at least one point of degree

at least 3. Assume v be a point of degree 3. Clearly, T = K1,3. Then by the Theorem [D],

i [TB (T )] > 1 since TB(T ) is a subgraph of PTB
(T ). Clearly i[PTB

(T )] > 2 a contradiction.

Case 2 Suppose T is a closed path with p points, then it is a cycle with p points. By Theorem

[D], PTB
(T ) is minimally non-outer planar. By Remark 7, i[PTB

(T )] > 1, a contradiction.

Case 3 Suppose T is a closed path with p ≥ 4 points, clearly by Remark 6, i[PTB
(T )] > 2, a

contradiction.

Conversely, suppose T is a path with 3 points, clearly by Remark 6, i[PTB
(T )] = 1. This

gives the required result. �

In the following theorem we characterize the non-Eulerian PTB
(T ).

Theorem 13 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

non-Eulerian.
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Proof We consider the following cases.

Case 1 Suppose T is a path. For p = 2 points, then PTB
(T ) = K4 − x, which is non-Eulerian.

For p = 3 points, then PTB
(T ) is a wheel, which is non-Eulerian.

For p ≥ 4 we have a path P : v1, v2, v3, . . . , vp. Now in path each line is a block. Then

v1v2 = e1 = b1, v2v3 = e2 = b2, . . . , vp−1vp = ep−1 = bp−1, ∀ep−1 ∈ E (G), and ∀bp−1 ∈

V [TB (P )]. In TB(P ), the degree of each point is even except b1 and bp−1. Since the path P

has exactly one pathos which is a point of PTB
(P ) and is adjacent to the points v1, v2, v3, . . . , vp,

of TB (P ) which are of even degree, gives as an odd degree points in PTB
(P ) including odd

degree points b1 and b2. Clearly PTB
(P ) is non-Eulerian.

Case 2 Suppose T is not a path. We consider the following subcases,

Subcase 2.1 Assume T has a unique point degree ≥ 3 and T = K1.n, where n is odd. Then

in TB (T ) each block is a triangle such that there are n number of triangles with a common cut

point k which has a degree 2n. Since the degree of each point in TB (K1,n) is Eulerian. To form

PTB
(T ) where T = K1,n, the points of degree 2 and the point k are joined by the corresponding

pathos point which gives (n + 1) points of odd degree in PTB
(K1.n). PTB

(K1.n) has n points

of odd degree. Hence PTB
(T ) non-Eulerian.

Assume that T = K1.n, where n is even, then in TB (T ) each block is a triangle, which

are 2n in number with a common cut point k. Since the degree of each point other than k is

either 2 or (n + 1) and the degree of the point k is 2n. One can easily verify that TB (K1,n)

is non-Eulerian. To form PTB
(T ) where T = K1,n, the points of degree 2 and the point k are

joined by the corresponding pathos point which gives (n + 2) points of odd degree in PTB
(T ).

Hence PTB
(T ) non-Eulerian.

Subcase 2.2 Assume T has at least two points of degree ≥ 3. Then V [TB (T )] = V (G) ∪

{b1, b2, b3, . . . , bp}, ∀ep ∈ E (G). In TB (T ), each endpoint has degree 2 and these points are

adjacent to the corresponding pathos points in PTB
(T ) gives degree 3, From Case 1, Tree T

has at least 4 points and by Corollary [A], PTB
(T ) has at least two points of degree 3. Hence

PTB
(T ) is non-Eulerian. �

In the next theorem we characterize the hamiltonian PTB
(T ).

Theorem 14 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T is

hamiltonian.

Proof We consider the following cases.

Case 1 Suppose T is a path with {u1, u2, u3, . . . , un} ∈ V (T ) and b1, b2, b3, . . . , bm be the num-

ber of blocks of T such that m = n− 1. Then it has exactly one path of pathos. Now point set

of TB (T ) is V [TB (T )] = {u1, u2, . . . , un} ∪ {b1, b2, . . . , bm}. Since given graph is a path then in

TB (T ), b1 = e1, b2 = e2, . . . , bm = em, such that b1, b2, b3, . . . , bm ⊂ V [TB (T )]. Then by the def-

inition of total block graph {u1, u2, . . . , um}∪ {b1, b2, . . . , bm−1, bm} ∪ {b1, u1, b2u2, . . . , bmun−1,

bmun} form line set of TB (T )[see Fig. 4].

Now this path has exactly one pathos say w. In forming pathos total block graph of a path,

the pathos w becomes a point, then V [PTB
(T )] = {u1, u2, . . . , un}∪ {b1, b2, . . . , bm}∪ {w} and
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w is adjacent to all the points {u1, u2, . . . , um} shown in the Fig.5.
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In PTB
(T ), the hamiltonian cycle w, u1, b1, u2, b2, u2, u3, b3, . . . , un−1, bm, un, w exist. Clearly

the pathos total block graph of a path is hamiltonian graph.

Case 2 Suppose T is not a path. Then T has at least one point with degree at least 3. Assume

that T has exactly one point u such that degree> 2. Now we consider the following subcases

of case 2.

Subcase 2.1 Assume T = K1.n, n > 2 and is odd. Then the number of paths of pathos

are n+1
2 . Let V [TB (T )] = {u1, u2, . . . , un, b1, b2, . . . , bm−1}. By the definition of PTB

(T ),

V [PTB
(T )] = {u1, u2, . . . , un, b1b2, . . . , bn−1}∪ {p1, p2, . . . , pn+1/2}. Then there exists a cycle

containing the points of PTB
(T ) as p1, u1, b1, b2, u3, p2, u2, b3, u4, . . . p1 and is a hamiltonian

cycle. Hence PTB
(T ) is a hamiltonian.

Subcase 2.2 Assume T = K1.n, n > 2 and is even. Then the number of path of pathos are n
2 ,

then V [TB (T )] = {u1, u2, . . . , un, b1, b2, . . . bn−1}. By the definition of PTB
(T ). V [PTB

(T )] =

{u1, u2, . . . , un, b1, b2, . . . , bn−1}∪ {p1, p2, . . . , pn/2}. Then there exist a cycle containing the

points of PTB
(T ) as p1, u1, b1, b2, u3, p2, u4, b3, b4, . . . , p1 and is a hamiltonian cycle. Hence

PTB
(T ) is a hamiltonian.
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Suppose T is neither a path or a star. Then T contains at least two points of degree> 2. Let

u1, u2, u3, . . . , un be the points of degree ≥ 2 and v1, v2, v3, . . . , vm be the end points of T . Since

end block is a line in T , and denoted as b1, b2, . . . , bk, then tree T has pi pathos points, i > 1 and

each pathos point is adjacent to the point of T where the corresponding pathos lie on the points

of T . Let {p1, p2, ....., pi} be the pathos points of T . Then there exists a cycle C containing

all the points of PTB
(T ) as p1, v1, b1, b2, v2, p2, u1, b3, u2, p3, v3, b4, . . . , vn−1, bn−1, bn, vn, . . . , p1.

Hence PTB
(T ) is a hamiltonian cycle. Hence PTB

(T ) is a hamiltonian graph. �

In the next theorem we characterize PTB
(T ) in terms of crossing number one.

Theorem 15 For any non trivial tree T , the pathos total block graph PTB
(T ) of a tree T has

crossing number one if and only if ∆(T ) ≤ 4, and there exist a unique point in T of degree 4.

Proof Suppose PTB
(T ) has crossing number one. Then it is non-planar. Then by Theorem

10, we have ∆(T ) ≥ 4. We now consider the following cases.

Case 1 Assume ∆(T ) = 5. Then by Theorem [E], TB (T ) is non-planar with crossing number

more than one. Since TB (T ) is a subgraph of PTB
(T ). Clearly cr(PTB

(T )) > 1, a contradiction.

Case 2 Assume ∆(T ) = 4. Suppose T has two points of degree 4. Then by Theorem [E], TB (T )

has crossing number at least two. But TB (T ) is a subgraph of PTB
(T ). Hence cr(PTB

(T )) > 1,

a contradiction.

Conversely, suppose T satisfies the given condition and assume T has a unique point v of

degree 4. The lines which are blocks in T such that they are the points in TB (T ). In TB (T ),

these block points and a point v together forms an induced subgraph as k5. In forming PTB
(T ),

the pathos points are adjacent to at most two points of this induced subgraph. Hence in all

these cases the cr(PTB
(T )) = 1. This completes the proof. �
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