ON THE PERMUTATION SEQUENCE AND ITS SOME PROPERTIES*

Zhang Wenpeng
Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is to prove that there is no any perfect power among the permutation sequence: 12, 1342, 135642, 13578642, 13579108642, $\ldots \ldots$. Thispanswered the question 20 of F.Smarandach in [1].

for $x \leqslant 9 / \frac{\text { Thisanswered the ques }}{\text { partially }}$

1. Introduction

For any positive integer n, we define the permutation sequence $\{P(n)\}$ as follows: $P(1)=12, P(2)=1342, P(3)=135642, P(4)=13578642, P(5)=13579108642$, $\cdots \cdots, P(n)=135 \cdots(2 n-1)(2 n)(2 n-2) \cdots 42, \cdots \cdots$, . In problem 20 of [1], Professor F.Smarandach asked us to answer such a question: Is there any perfect power among these numbers? Conjecture: no! This problem is interesting, because it can help us to find some new properties of permutation sequence. In this paper, we shall study the properties of the permutation sequence $P(n)$, and proved that the F.Smarandach conjecture is true. This solved the problem 20 of [1], and more, we also obtained some new divisible properties of $P(n)$. That is, we shall prove the following conclusion:

Theorem. There is no any perfect power among permutation sequence, and

$$
P(n)=\frac{1}{81}\left(11 \cdot 10^{2 n}-13 \cdot 10^{n}+2\right)=\overbrace{11 \cdots 1}^{n} \times 1 \overbrace{22 \cdots 2}^{n} \text {, for } n \leqslant 9 \text {. }
$$

2. Proof of the Theorem

In this section, we complete the proof of the Theorem. First for any positive integer n, we have

$$
\begin{aligned}
P(n)= & 10^{2 n-1}+3 \times 10^{2 n-2}+\cdots+(2 n-1) \times 10^{n} \\
& +2 n \times 10^{n-1}+(2 n-2) \times 10^{n-2}+\cdots 4 \times 10+2 \\
= & {\left[10^{2 n-1}+3 \times 10^{2 n-2}+\cdots+(2 n-1) \times 10^{n}\right] } \\
& +\left[2 n \times 10^{n-1}+(2 n-2) \times 10^{n-2}+\cdots 4 \times 10+2\right]
\end{aligned}
$$

[^0]\[

$$
\begin{equation*}
\equiv S_{1}+S_{2} \tag{1}
\end{equation*}
$$

\]

Now we compute S_{1} and S_{2} in (1) respectively. Note that

$$
\begin{aligned}
9 S_{1}= & 10 S_{1}-S_{1}=10^{2 n}+3 \times 10^{2 n-1}+\cdots(2 n-1) \times 10^{n+1} \\
& -10^{2 n-1}-3 \times 10^{2 n-2}-\cdots-(2 n-1) \times 10^{n} \\
= & 10^{2 n}+2 \times 10^{2 n-1}+2 \times 10^{2 n-2}+\cdots+2 \times 10^{n+1}-(2 n-1) \times 10^{n} \\
= & 10^{2 n}+2 \times 10^{n+1} \times \frac{10^{n-1}-1}{9}-(2 n-1) \times 10^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
9 S_{2} & =10 S_{2}-S_{2}=2 n \times 10^{n}+(2 n-2) \times 10^{n-1}+\cdots 4 \times 10^{2}+2 \times 10 \\
& -2 n \times 10^{n-1}-(2 n-2) \times 10^{n-2}-\cdots 4 \times 10-2 \\
& =2 n \times 10^{n}-2 \times 10^{n-1}-2 \times 10^{n-2}-\cdots 2 \times 10-2 \\
& =2 n \times 10^{n}-2 \times \frac{10^{n}-1}{9} .
\end{aligned}
$$

So that

$$
\begin{equation*}
S_{1}=\frac{1}{81} \times\left[11 \times 10^{2 n}-18 n \times 10^{n}-11 \times 10^{n}\right] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}=\frac{1}{81}\left[18 n \times 10^{n}-2 \times 10^{n}+2\right] . \tag{3}
\end{equation*}
$$

Thus combining (1), (2) and (3) we have

$$
\begin{aligned}
P(n)=S_{1} & +S_{2}=\frac{1}{81} \times\left[11 \times 10^{2 n}-18 n \times 10^{n}-11 \times 10^{n}\right] \\
& +\frac{1}{81}\left[18 n \times 10^{n}-2 \times 10^{n}+2\right]
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{81}\left(11 \cdot 10^{2 n}-13 \cdot 10^{n}+2\right)=\overbrace{11 \cdots 1}^{n} \times 1 \overbrace{22 \cdots 2}^{n} . \tag{4}
\end{equation*}
$$

From (4) we can easily find that $2 \mid P(n)$, but $4 \nmid P(n)$, if $n \geq 2$, So that $P(n)$ can not be a perfect power, if $n \geq 2$. In fact, if we assume $P(n)$ be a perfect power, then $P(n)=m^{k}$, for some positive integer $m \geq 2$ and $k \geq 2$. Since $2 \mid P(n)$, so that m must be an even number. Thus we have $4 \mid P(n)$. This contradiction with $4 \nmid P(n)$, if $n \geq 2$. Note that $P(1)$ is not a perfect power, so that $P(n)$ can be a perfect power for all $n \geq 1$, This completes the proof of the Theorem.

and $n \leqslant 9$. References

1. F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 21.
2. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
3. R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
4. "Smarandache Sequences" at http://www.gallup.unm.edu/"smarandache/snaqint.txt.
5. "Smarandache Sequences" at http://www.gallup.unm.edu/"smarandache/snaqint2.txt.
6. "Smarandache Sequences" at http://www.gallup.unm.edu//smarandache/snaqint3.txt.

[^0]: Key words and phrases. Permutation sequence; Perfect power; A problem of F.Smarandach.

 * This work is supported by the N.S.F. and the P.S.F. of P.R.China.

