ON THE M-POWER FREE PART OF AN INTEGER

Liu Yanni
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China
Gao Peng
School of Economics and Management,Northwest University, Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is using the elementary method to study the mean value properties of a new arithmetical function involving the m-power free part of an integer, and give an interesting asymptotic formula for it.

Keywords: Arithmetical function; Mean value; Asymptotic formula

§1. Introduction

For any positive integer n, it is clear that we can assume $n=u^{m} v$, where v is a m-power free number. Let $b_{m}(n)=v$ be the m-power free part of n. For example, $b_{3}(8)=1, b_{3}(24)=3, b_{2}(12)=3, \cdots \cdots$. Now for any positive integer $k>1$, we define another function $\delta_{k}(n)$ as following:

$$
\delta_{k}(n)=\max \{d: d \mid n,(d, k)=1\} .
$$

From the definition of $\delta_{k}(n)$, we can prove that $\delta_{k}(n)$ is also a completely multiplicative function. In reference [1], Professor F.Smarandache asked us to study the properties of the sequence $\left\{b_{m}(n)\right\}$. It seems that no one knows the relations between sequence $\left\{b_{m}(n)\right\}$ and the arithmetical function $\delta_{k}(n)$ before. The main purpose of this paper is to study the mean value properties of $\delta_{k}\left(b_{m}(n)\right)$, and obtain an interesting mean value formula for it. That is, we shall prove the following conclusion:
Theorem. Let m and k be any fixed positive integer. Then for any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} \delta_{k}\left(b_{m}(n)\right)=\frac{x^{2}}{2} \frac{\zeta(2 m)}{\zeta(m)} \prod_{p \mid k} \frac{p^{m}+1}{p^{m-1}(p+1)}+O\left(x^{\frac{3}{2}+\epsilon}\right),
$$

where ϵ denotes any fixed positive number, $\zeta(s)$ is the Riemann zeta-function, and $\prod_{p \mid k}$ denotes the product over all different prime divisors of k.

Taking $m=2$ in this Theorem, we may immediately obtain the following:
Corollary. For any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} \delta_{k}\left(b_{2}(n)\right)=\frac{\pi^{2}}{30} x^{2} \prod_{p \mid k} \frac{p^{2}+1}{p(p+1)}+O\left(x^{\frac{3}{2}+\varepsilon}\right)
$$

§2. Proof of the Theorem

In this section, we shall use the analytic method to complete the proof of the theorem. In fact, we know that $b_{m}(n)$ is a completely multiplicative function, so we can use the properties of the Riemann zeta-function to obtain a generating function. For any complex s, if $\operatorname{Re}(s)>2$, we define the Dirichlet series

$$
f(s)=\sum_{n=1}^{\infty} \frac{\delta_{k}\left(b_{m}(n)\right)}{n^{s}}
$$

If positive integer $n=p^{\alpha}$, then from the definition of $\delta_{k}(n)$ and $b_{m}(n)$ we have:

$$
\delta_{k}\left(b_{m}(n)\right)=\delta_{k}\left(b_{m}\left(p^{\alpha}\right)\right)=1, \quad \text { if } \quad p \mid k
$$

and
$\delta_{k}\left(b_{m}(n)\right)=\delta_{k}\left(b_{m}\left(p^{\alpha}\right)\right)=p^{\beta}, \quad$ if $\alpha \equiv \beta \bmod m, 0 \leq \beta<m \quad$ and $\quad p \dagger k$.
From the above formula and the Euler product formula (See Theorem 11.6 of [3]) we can get

$$
\begin{aligned}
f(s)= & \prod_{p}\left(1+\frac{\delta_{k}\left(b_{m}(p)\right)}{p^{s}}+\frac{\delta_{k}\left(b_{m}\left(p^{2}\right)\right)}{p^{2 s}}+\frac{\delta_{k}\left(b_{m}\left(p^{3}\right)\right)}{p^{3 s}}+\cdots\right) \\
= & \prod_{p \mid k}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots+\frac{1}{p^{(m-1) s}}+\frac{1}{p^{m s}}+\frac{1}{p^{(m+1) s}}+\cdots\right) \\
& \times \prod_{p \nmid k}\left(1+\frac{p}{p^{s}}+\frac{p^{2}}{p^{2 s}}+\cdots+\frac{p^{m-1}}{p^{(m-1) s}}+\frac{1}{p^{m s}}+\frac{p}{p^{(m+1) s}}+\cdots\right) \\
= & \prod_{p \mid k} \frac{1}{1-\frac{1}{p^{s}}} \prod_{p \dagger k}\left[\left(1+\frac{p}{p^{s}}+\ldots+\frac{p^{m-1}}{p^{(m-1) s}}\right)\left(1+\frac{1}{p^{m s}}+\frac{1}{p^{2 m s}}+\cdots\right)\right] \\
= & \prod_{p \mid k} \frac{1}{1-\frac{1}{p^{s}}} \prod_{p \dagger k} \frac{1}{1-\frac{1}{p^{m s}}} \prod_{p \dagger k}\left(1+\frac{p}{p^{s}}+\ldots+\frac{p^{m-1}}{p^{(m-1) s}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{p \mid k} \frac{1}{1-\frac{1}{p^{s}}} \prod_{p \dagger k} \frac{1-\frac{1}{p^{m(s-1)}}}{1-\frac{1}{p^{s-1}}} \times \frac{1}{1-\frac{1}{p^{m s}}} \\
& =\frac{\zeta(s-1) \zeta(m s)}{\zeta(m s-m)} \prod_{p \mid k} \frac{\left(1-\frac{1}{p^{s-1}}\right)\left(1-\frac{1}{p^{m s}}\right)}{\left(1-\frac{1}{p^{m(s-1)}}\right)\left(1-\frac{1}{p^{s}}\right)}
\end{aligned}
$$

Because the Riemann zeta-function $\zeta(s)$ have a simple pole point at $s=1$ with the residue 1 , we know that $f(s) \frac{x^{s}}{s}$ also have a simple pole point at $s=2$ with the residue $\frac{\zeta(2 m)}{\zeta(m)} \prod_{p \mid k} \frac{p^{m}+1}{p^{m-1}(p+1)} \frac{x^{2}}{2}$. By Perron formula (See [2]), taking $s_{0}=0, b=3, T>1$, then we have

$$
\sum_{n \leq x} \delta_{k}\left(b_{m}(n)\right)=\frac{1}{2 \pi i} \int_{3-i T}^{3+i T} f(s) \frac{x^{s}}{s} d s+O\left(\frac{x^{3+\epsilon}}{T}\right)
$$

Now we move the integral line to $\operatorname{Re} s=\frac{3}{2}+\epsilon$, then taking $T=x^{\frac{3}{2}}$, we can get

$$
\begin{aligned}
& \sum_{n \leq x} \delta_{k}\left(b_{m}(n)\right) \\
= & \frac{\zeta(2 m)}{\zeta(m)} \prod_{p \mid k} \frac{p^{m}+1}{p^{m-1}(p+1)} \frac{x^{2}}{2}+\frac{1}{2 \pi i} \int_{\frac{3}{2}+\epsilon-i T}^{\frac{3}{2}+\epsilon+i T} f(s) \frac{x^{s}}{s} d s+O\left(x^{\frac{3}{2}+\epsilon}\right) \\
= & \frac{\zeta(2 m)}{\zeta(m)} \prod_{p \mid k} \frac{p^{m}+1}{p^{m-1}(p+1)} \frac{x^{2}}{2}+O\left(\int_{-T}^{T}\left|f\left(\frac{3}{2}+\epsilon+i t\right)\right| \frac{x^{\frac{3}{2}+\epsilon}}{1+|t|} d t\right) \\
& +O\left(x^{\frac{3}{2}+\epsilon}\right) \\
= & \frac{\zeta(2 m)}{\zeta(m)} \prod_{p \mid k} \frac{p^{m}+1}{p^{m-1}(p+1)} \frac{x^{2}}{2}+O\left(x^{\frac{3}{2}+\epsilon}\right) .
\end{aligned}
$$

This completes the proof of Theorem.
Note that $\zeta(2)=\frac{\pi^{2}}{6}$ and $\zeta(4)=\frac{\pi^{4}}{90}$, taking $m=2$ in the theorem, we may immediately obtain the Corollary.

References

[1] F.Smarandache, Only Problems,Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] Pan Chengdong and Pan Chengbiao, Foundation of Analytic Number Theory, Beijing, Science Press, 1991.
[3] Tom M.Apstol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

