ON PRIMES IN THE SMARANDACHE PIERCED CHAIN

Maohua Le

Department of Mathematics, Zhanjiang Normal College
Zhanjiang, Guangdong, P.R. China.

Abstract. Let \(C = \{c_n\}_{n=1}^{\infty} \) be the Smarandache pierced chain. In this paper we prove that if \(n > 2 \), then \(c_n/101 \) is not a prime.

For any positive integer \(n \), let

\[
(1) \quad c_n = 101 \times 10001001\ldots0001.
\]

Then the sequence \(C = \{c_n\}_{n=1}^{\infty} \) is called the Smarandache pierced chain (see [2, Notion 19]). In [3], Smarandache asked the following question:

Question. How many \(c_n/101 \) are primes?

In this paper we give a complete answer as follows:

Theorem. If \(n > 2 \), then \(c_n/101 \) is not a prime.

Proof. Let \(\zeta_n = e^{2\pi i / n} \) be a primitive root of unity with the degree \(n \), and let

\[
f_n(x) = \prod_{1 \leq k < n, \gcd(k,n) = 1} (x - \zeta_n^k).
\]

Then \(f_n(x) \) is a polynomial with integer coefficients. Further, it is a well known fact that if \(x > 2 \), then \(f_n(x) > 1 \) (see [1]). This implies that if \(x \) is an integer with \(x > 2 \), then \(f_n(x) \) is an integer with \(f_n(x) > 1 \). On the other hand, we have

\[
(2) \quad x^n - 1 = \prod_{d | n} f_d(x).
\]

We see from (1) that if \(n > 1 \), then
By the above definition, we find from (2) and (3) that

\[\frac{c_n}{101} = \frac{1 + 10 + 10 + \ldots + 10}{10^4 - 1} \]

Since \(n > 2 \), we get \(2n > 4 \) and \(4n > 4 \). It implies that both \(2n \) and \(4n \) are divisors of \(4n \) but not of \(4 \). Therefore, we get from (4) that

\[\frac{c_n}{101} = \frac{f_{2n}(10) f_{4n}(10)t}{10} \]

where \(t \) is not a positive integer. Notice that \(f_{2n}(10) > 1 \) and \(f_{4n}(10) > 1 \). We see from (5) that \(\frac{c_n}{101} \) is not a prime. The theorem is proved.

References