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Abstract Let p be a prime, n be any positive integer, Sp(n) denotes the smallest integer
m ∈ N+, where pn|m!. In this paper, we study the mean value properties of
Sp(n), and give an interesting asymptotic formula for it.
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§1. Introduction and results
Let p be a prime, n be any positive integer, Sp(n) denotes the smallest

integer such that Sp(n)! is divisible by pn. For example, S3(1) = 3, S3(2) =
6, S3(3) = 9, S3(4) = 9, · · · · · ·. In problem 49 of book [1], Professor F.
Smarandache ask us to study the properties of the sequence {Sp(n)}. About
this problem, Professor Zhang and Liu in [2] have studied it and obtained an
interesting asymptotic formula. That is, for any fixed prime p and any positive
integer n,

Sp(n) = (p− 1)n + O

(
p

ln p
· lnn

)
.

In this paper, we will use the elementary method to study the asymptotic prop-
erties of Sp(n) in the following form:

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| ,

where x be a positive real number, and give an interesting asymptotic formula
for it. In fact, we shall prove the following result:

Theorem. For any real number x ≥ 2, let p be a prime and n be any
positive integer. Then we have the asymptotic formula

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| = x

(
1− 1

p

)
+ O

(
lnx

ln p

)
.
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§2. Proof of the Theorem
In this section, we shall complete the proof of the theorem. First we need

following one simple Lemma. That is,
Lemma. Let p be a prime and n be any positive integer, then we have

|Sp(n + 1)− Sp(n)| =
{

p, if pn ‖ m!;
0, otherwise,

where Sp(n) = m, pn ‖ m! denotes that pn|m! and pn+1†m!.
Proof. Now we will discuss it in two cases.
(i) Let Sp(n) = m, if pn ‖ m!, then we have pn|m! and pn+1†m!. From

the definition of Sp(n) we have pn+1†(m+1)!, pn+1†(m+2)!, · · ·, pn+1†(m+
p− 1)! and pn+1|(m + p)!, so Sp(n + 1) = m + p, then we get

|Sp(n + 1)− Sp(n)| = p. (1)

(ii) Let Sp(n) = m, if pn|m! and pn+1|m!, then we have Sp(n+1) = m,
so

|Sp(n + 1)− Sp(n)| = 0. (2)

Combining (1) and (2), we can easily get

|Sp(n + 1)− Sp(n)| =
{

p, if pn ‖ m!;
0, otherwise.

This completes the proof of Lemma.
Now we use above Lemma to complete the proof of Theorem. For any real

number x ≥ 2, by the definition of Sp(n) and Lemma we have

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| = 1
p

∑

n≤x

pn‖m!

p =
∑

n≤x

pn‖m!

1, (3)

where Sp(n) = m. Note that if pn ‖ m!, then we have (see reference [3],
Theorem 1.7.2)

n =
∞∑

i=1

[
m

pi

]
=

∑

i≤logp m

[
m

pi

]

= m ·
∑

i≤logp m

1
pi

+ O
(
logp m

)

=
m

p− 1
+ O

(
lnm

ln p

)
. (4)

From (4), we can deduce that

m = (p− 1)n + O

(
p lnn

ln p

)
. (5)
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So that

1 ≤ m ≤ (p− 1) · x + O

(
p lnx

ln p

)
, if 1 ≤ n ≤ x.

Note that for any fixed positive integer n, if there has one m such that pn ‖ m!,
then pn ‖ (m + 1)!, pn ‖ (m + 2)!, · · ·, pn ‖ (m + p− 1)!. Hence there have

p times of m such that n =
∞∑
i=1

[
m
pi

]
in the interval 1 ≤ m ≤ (p − 1) · x +

O
(

p ln x
ln p

)
. Then from this and (3), we have

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| =
1
p

∑

n≤x

pn‖m!

p =
∑

n≤x

pn‖m!

1

=
1
p

(
(p− 1) · x + O

(
p lnx

ln p

))

= x ·
(

1− 1
p

)
+ O

(
lnx

ln p

)
.

This completes the proof of Theorem.
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