ON THE PRIMITIVE NUMBERS OF POWER P AND ITS ASYMPTOTIC PROPERTY *

Yi Yuan
Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China
yuanyi@mail.xjtu.edu.cn

Abstract

Let p be a prime, n be any positive integer, $S_{p}(n)$ denotes the smallest integer $m \in N^{+}$, where $p^{n} \mid m!$. In this paper, we study the mean value properties of $S_{p}(n)$, and give an interesting asymptotic formula for it.

Keywords: Smarandache function; Primitive numbers; Asymptotic formula

§1. Introduction and results

Let p be a prime, n be any positive integer, $S_{p}(n)$ denotes the smallest integer such that $S_{p}(n)$! is divisible by p^{n}. For example, $S_{3}(1)=3, S_{3}(2)=$ $6, S_{3}(3)=9, S_{3}(4)=9, \cdots \cdots$. In problem 49 of book [1], Professor F. Smarandache ask us to study the properties of the sequence $\left\{S_{p}(n)\right\}$. About this problem, Professor Zhang and Liu in [2] have studied it and obtained an interesting asymptotic formula. That is, for any fixed prime p and any positive integer n,

$$
S_{p}(n)=(p-1) n+O\left(\frac{p}{\ln p} \cdot \ln n\right) .
$$

In this paper, we will use the elementary method to study the asymptotic properties of $S_{p}(n)$ in the following form:

$$
\frac{1}{p} \sum_{n \leq x}\left|S_{p}(n+1)-S_{p}(n)\right|,
$$

where x be a positive real number, and give an interesting asymptotic formula for it. In fact, we shall prove the following result:

Theorem. For any real number $x \geq 2$, let p be a prime and n be any positive integer. Then we have the asymptotic formula

$$
\frac{1}{p} \sum_{n \leq x}\left|S_{p}(n+1)-S_{p}(n)\right|=x\left(1-\frac{1}{p}\right)+O\left(\frac{\ln x}{\ln p}\right) .
$$

[^0]
§2. Proof of the Theorem

In this section, we shall complete the proof of the theorem. First we need following one simple Lemma. That is,

Lemma. Let p be a prime and n be any positive integer, then we have

$$
\left|S_{p}(n+1)-S_{p}(n)\right|=\left\{\begin{array}{cc}
p, & \text { if } p^{n} \| m! \\
0, & \text { otherwise }
\end{array}\right.
$$

where $S_{p}(n)=m, p^{n} \| m$! denotes that $p^{n} \mid m!$ and $p^{n+1} \dagger m$!.
Proof. Now we will discuss it in two cases.
(i) Let $S_{p}(n)=m$, if $p^{n} \| m$!, then we have $p^{n} \mid m$! and $p^{n+1} \dagger m$!. From the definition of $S_{p}(n)$ we have $p^{n+1} \dagger(m+1)!, p^{n+1} \dagger(m+2)!, \cdots, p^{n+1} \dagger(m+$ $p-1)$! and $p^{n+1} \mid(m+p)!$, so $S_{p}(n+1)=m+p$, then we get

$$
\begin{equation*}
\left|S_{p}(n+1)-S_{p}(n)\right|=p \tag{1}
\end{equation*}
$$

(ii) Let $S_{p}(n)=m$, if $p^{n} \mid m!$ and $p^{n+1} \mid m!$, then we have $S_{p}(n+1)=m$, so

$$
\begin{equation*}
\left|S_{p}(n+1)-S_{p}(n)\right|=0 \tag{2}
\end{equation*}
$$

Combining (1) and (2), we can easily get

$$
\left|S_{p}(n+1)-S_{p}(n)\right|=\left\{\begin{array}{cc}
p, & \text { if } p^{n} \| m! \\
0, & \text { otherwise }
\end{array}\right.
$$

This completes the proof of Lemma.
Now we use above Lemma to complete the proof of Theorem. For any real number $x \geq 2$, by the definition of $S_{p}(n)$ and Lemma we have

$$
\begin{equation*}
\frac{1}{p} \sum_{n \leq x}\left|S_{p}(n+1)-S_{p}(n)\right|=\frac{1}{p} \sum_{\substack{n \leq x \\ p^{n} \| m!}} p=\sum_{\substack{n \leq x \\ p^{n} \| m!}} 1 \tag{3}
\end{equation*}
$$

where $S_{p}(n)=m$. Note that if $p^{n} \| m$!, then we have (see reference [3], Theorem 1.7.2)

$$
\begin{align*}
n & =\sum_{i=1}^{\infty}\left[\frac{m}{p^{i}}\right]=\sum_{i \leq \log _{p} m}\left[\frac{m}{p^{i}}\right] \\
& =m \cdot \sum_{i \leq \log _{p} m} \frac{1}{p^{i}}+O\left(\log _{p} m\right) \\
& =\frac{m}{p-1}+O\left(\frac{\ln m}{\ln p}\right) \tag{4}
\end{align*}
$$

From (4), we can deduce that

$$
\begin{equation*}
m=(p-1) n+O\left(\frac{p \ln n}{\ln p}\right) \tag{5}
\end{equation*}
$$

So that

$$
1 \leq m \leq(p-1) \cdot x+O\left(\frac{p \ln x}{\ln p}\right), \quad \text { if } \quad 1 \leq n \leq x
$$

Note that for any fixed positive integer n, if there has one m such that $p^{n} \| m$!, then $p^{n}\left\|(m+1)!, p^{n}\right\|(m+2)!, \cdots, p^{n} \|(m+p-1)!$. Hence there have p times of m such that $n=\sum_{i=1}^{\infty}\left[\frac{m}{p^{i}}\right]$ in the interval $1 \leq m \leq(p-1) \cdot x+$ $O\left(\frac{p \ln x}{\ln p}\right)$. Then from this and (3), we have

$$
\begin{aligned}
\frac{1}{p} \sum_{n \leq x}\left|S_{p}(n+1)-S_{p}(n)\right| & =\frac{1}{p} \sum_{n \leq x} p=\sum_{n \leq x} 1 \\
& =\frac{1}{p}\left((p-1) \cdot x+O\left(\frac{p \ln x}{\ln p}\right)\right) \\
& =x \cdot\left(1-\frac{1}{p}\right)+O\left(\frac{\ln x}{\ln p}\right)
\end{aligned}
$$

This completes the proof of Theorem.

References

[1] F.Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publ. House, 1993.
[2] Zhang Wenpeng and Liu Duansen, primitive numbers of power p and its asymptotic property, Smaramche Notes Journal, 13 (2002) 173-175.
[3] Pan Chengdong and Pan Chengbiao, The Elementary number Theory, Beijing University, Press Beijing, 2003.
[4] Tom M.Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

[^0]: *This work is supported by the Zaizhi Doctorate Foundation of Xi'an Jiaotong University.

