On the primitive numbers of power P and its mean value properties ${ }^{1}$

Ding Liping
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China,710069

Abstract

Let p be a prime, n be any fixed positive integer. $S_{p}(n)$ denotes the smallest positive integer such that $S_{p}(n)$! is divisible by p^{n}. In this paper, we study the mean value properties of $S_{p}(n)$ for p, and give a sharp asymptotic formula for it.

Keywords Primitive numbers; Mean value; Asymptotic formula.

§1. Introduction

Let p be a prime, n be any fixed positive integer, $S_{p}(n)$ denotes the smallest positive integer such that $S_{p}(n)$! is divisible by p^{n}. For example, $S_{3}(1)=3, S_{3}(2)=6, S_{3}(3)=9$, $S_{3}(4)=9, S_{3}(5)=12, \cdots$. In problem 49 of book [1], Professor F. Smarandache asks us to study the properties of the sequence $S_{p}(n)$. About this problem, some asymptotic properties of this sequence have been studied by Zhang Wenpeng and Liu Duansen [2], they proved that

$$
S_{p}(n)=(p-1) n+O\left(\frac{p}{\log p} \log n\right)
$$

The problem is interesting because it can help us to calculate the Smarandache function. In this paper, we use the elementary methods to study the mean value properties of $S_{p}(n)$ for p, and give a sharp asymptotic formula for it. That is, we shall prove the following:

Theorem Let $x \geq 2$, for any fixed positive integer n, we have the asymptotic formula

$$
\sum_{p \leq x} S_{p}(n)=\frac{n x^{2}}{2 \log x}+\sum_{m=1}^{k-1} \frac{n a_{m} x^{2}}{\log ^{m+1} x}+O\left(\frac{n x^{2}}{\log ^{k+1} x}\right)
$$

where $a_{m}(m=1,2, \cdots, k-1)$ are computable constants.

§2. Some Lemmas

To complete the proof of the theorem, we need the following:
Lemma Let p be a prime, n be any fixed positive integer. Then we have the estimate

$$
(p-1) n \leq S_{p}(n) \leq n p
$$

[^0]Proof. Let $S_{p}(n)=k=a_{1} p^{\alpha_{1}}+a_{2} p^{\alpha_{2}}+\cdots+a_{s} p^{\alpha_{s}}$ with $\alpha_{s}>\alpha_{s-1}>\cdots>\alpha_{1} \geq 0$ under the base p. Then from the definition of $S_{p}(n)$ we know that $p \mid S_{p}(n)$! and the $S_{p}(n)$ denotes the smallest integer satisfy the condition. However, let

$$
(n p)!=1 \cdot 2 \cdot 3 \cdots p \cdot(p+1) \cdots 2 p \cdot(2 p+1) \cdots n p=u p^{l} .
$$

where $l \geq n, p \dagger u$.
So combining this and $p \mid S_{p}(n)$! we can easily obtain

$$
\begin{equation*}
S_{p}(n) \leq n p \tag{1}
\end{equation*}
$$

On the other hand, from the definition of $S_{p}(n)$ we know that $p \mid S_{p}(n)$! and $p^{n} \dagger\left(S_{p}(n)-1\right)$!, so that $\alpha_{1} \geq 1$, note that the factorization of $S_{p}(n)$! into prime powr is

$$
k!=\prod_{q \leq k} q^{\alpha_{q}(k)} .
$$

where $\prod_{q \leq k}$ denotes the product over all prime, and

$$
\alpha_{q}(k)=\sum_{i=1}^{\infty}\left[\frac{k}{q^{i}}\right]
$$

because $p \mid S_{p}(n)$!, so we have

$$
n \leq \alpha_{p}(k)=\sum_{i=1}^{\infty}\left[\frac{k}{p^{i}}\right]=\frac{k}{p-1}
$$

or

$$
\begin{equation*}
(p-1) n \leq k \tag{2}
\end{equation*}
$$

combining (1) and (2) we immediately get the estimate

$$
(p-1) n \leq S_{p}(n) \leq n p
$$

This completes the proof of the lemma.

§3. Proof of the theorem

In this section, we complete the proof of Theorem. Based on the result of lemma

$$
(p-1) n \leq S_{p}(n) \leq n p
$$

we can easily get

$$
\sum_{p \leq x}(p-1) n \leq \sum_{p \leq x} S_{p}(n) \leq \sum_{p \leq x} n p
$$

Let

$$
a(n)= \begin{cases}1, & \text { if } n \text { is prime } \\ 0, & \text { otherwise }\end{cases}
$$

Then from [3] we know that for any positive integer k ,

$$
\sum_{n \leq x} a(n)=\pi(x)=\frac{x}{\log x}\left(1+\sum_{m=1}^{k-1} \frac{m!}{\log ^{m} x}\right)+O\left(\frac{x}{\log ^{k+1} x}\right) .
$$

By Abel's identity we have

$$
\begin{aligned}
& \sum_{p \leq x} p=\sum_{m \leq x} a(m) m \\
= & \pi(x) x-\int_{2}^{x} \pi(t) d t \\
= & \frac{x^{2}}{\log x}+\frac{x^{2}}{\log x} \sum_{m=1}^{k-1} \frac{m!}{\log ^{m} x}-\int_{2}^{x} \frac{t}{\log t}\left(1+\sum_{m=1}^{k-1} \frac{m!}{\log ^{m} t}\right) d t+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) \\
= & \frac{x^{2}}{2 \log x}+\sum_{m=1}^{k-1} \frac{a_{m} x^{2}}{\left.\log ^{(} m+1\right) x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
\end{aligned}
$$

where $a_{m}(m=1,2, \cdots, k-1)$ are computable constants. From above we have

$$
\sum_{p \leq x}(p-1)=\sum_{p \leq x} p-\pi(x)=\frac{x^{2}}{2 \log x}+\sum_{m=1}^{k-1} \frac{a_{m} x^{2}}{\log (m+1) x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
$$

Therefore

$$
\sum_{p \leq x} S_{p}(n)=\sum_{p \leq x} k==\frac{x^{2}}{2 \log x}+\sum_{m=1}^{k-1} \frac{a_{m} x^{2}}{\log (m+1) x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right) .
$$

This completes the proof of the theorem.

Acknowledgments

The author express his gratitude to his supervisor Professor Zhang Wenpeng for his very helpful and detailed instructions.

References

[1] F.Smarandache, Only problems, Not Solutions, Chicago, Xiquan Publ. House, 1993.
[2] Zhang Wenpeng and Liu Duansen, On the primitive numbers of power P and its asymptotic property, Smarandache Notions Journal, 13(2002), 173-175.
[3] M.Ram Murty, Problems in analytic number theory, Springer-Verlag, New York, 2001, pp. 36

[^0]: ${ }^{1}$ This work is supported by the N.S.F(10271093) and P.N.S.F of P.R.China

