Some Properties of Birings

A.A.A.Agboola
(Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria)
\section*{B.Davvaz}
(Department of Mathematics, Yazd University, Yazd, Iran)
E-mail: aaaola2003@yahoo.com, davvaz@yazd.ac.ir

Abstract

Let R be any ring and let $S=R_{1} \cup R_{2}$ be the union of any two subrings of R. Since in general S is not a subring of R but R_{1} and R_{2} are algebraic structures on their own under the binary operations inherited from the parent ring R, S is recognized as a bialgebraic structure and it is called a biring. The purpose of this paper is to present some properties of such bialgebraic structures.

Key Words: Biring, bi-subring, bi-ideal, bi-field and bidomain
AMS(2010): 08A05, 13A05, 13A15

$\S 1$ Introduction

Generally speaking, the unions of any two subgroups of a group, subgroupoids of a groupoid, subsemigroups of a semigroup, submonoids of a monoid, subloops of a loop, subsemirings of a semiring, subfields of a field and subspaces of a vector space do not form any nice algebraic structures other than ordinary sets. Similarly, if S_{1} and S_{2} are any two subrings of a ring R, I_{1} and I_{2} any two ideals of R, the unions $S=S_{1} \cup S_{2}$ and $I=I_{1} \cup I_{2}$ generally are not subrings and ideals of R, respectively [2]. However, the concept of bialgebraic structures recently introduced by Vasantha Kandasamy [9] recognises the union $S=S_{1} \cup S_{2}$ as a biring and $I=I_{1} \cup I_{2}$ as a bi-ideal. One of the major advantages of bialgebraic structures is the exhibition of distinct algebraic properties totally different from those inherited from the parent structures. The concept of birings was introduced and studied in [9]. Other related bialgebraic structures introduced in [9] included binear-rings, bisemi-rings, biseminear-rings and group birings. Agboola and Akinola in [1] studied bicoset of a bivector space. Also, we refer the readers to [3-7]. In this paper, we will present and study some properties of birings.

[^0]
§2. Definitions and Elementary Properties of Birings

Definition 2.1 Let R_{1} and R_{2} be any two proper subsets of a non-empty set R. Then, $R=$ $R_{1} \cup R_{2}$ is said to be a biring if the following conditions hold:
(1) R_{1} is a ring;
(2) R_{2} is a ring.

Definition 2.2 A biring $R=R_{1} \cup R_{2}$ is said to be commutative if R_{1} and R_{2} are commutative rings. $R=R_{1} \cup R_{2}$ is said to be a non-commutative biring if R_{1} is non-commutative or R_{2} is non-commutative.

Definition 2.3 A biring $R=R_{1} \cup R_{2}$ is said to have a zero element if R_{1} and R_{2} have different zero elements. The zero element 0 is written $0_{1} \cup 0_{2}$ (notation is not set theoretic union) where $0_{i}, i=1,2$ are the zero elements of R_{i}. If R_{1} and R_{2} have the same zero element, we say that the biring $R=R_{1} \cup R_{2}$ has a mono-zero element.

Definition 2.4 A biring $R=R_{1} \cup R_{2}$ is said to have a unit if R_{1} and R_{2} have different units. The unit element u is written $u_{1} \cup u_{2}$, where $u_{i}, i=1,2$ are the units of R_{i}. If R_{1} and R_{2} have the same unit, we say that the biring $R=R_{1} \cup R_{2}$ has a mono-unit.

Definition 2.5 A biring $R=R_{1} \cup R_{2}$ is said to be finite if it has a finite number of elements. Otherwise, R is said to be an infinite biring. If R is finite, the order of R is denoted by o(R).

Example 1 Let $R=\{0,2,4,6,7,8,10,12\}$ be a subset of \mathcal{Z}_{14}. It is clear that $(R,+, \cdot)$ is not a ring but then, $R_{1}=\{0,7\}$ and $R_{2}=\{0,2,4,6,8,10,12\}$ are rings so that $R=R_{1} \cup R_{2}$ is a finite commutative biring.

Definition 2.6 Let $R=R_{1} \cup R_{2}$ be a biring. A non-empty subset S of R is said to be a sub-biring of R if $S=S_{1} \cup S_{2}$ and S itself is a biring and $S_{1}=S \cap R_{1}$ and $S_{2}=S \cap R_{2}$.

Theorem 2.7 Let $R=R_{1} \cup R_{2}$ be a biring. A non-empty subset $S=S_{1} \cup S_{2}$ of R is a sub-biring of R if and only if $S_{1}=S \cap R_{1}$ and $S_{2}=S \cap R_{2}$ are subrings of R_{1} and R_{2}, respectively.

Definition 2.8 Let $R=R_{1} \cup R_{2}$ be a biring and let x be a non-zero element of R. Then,
(1) x is a zero-divisor in R if there exists a non-zero element y in R such that $x y=0$;
(2) x is an idempotent in R if $x^{2}=x$;
(3) x is nilpotent in R if $x^{n}=0$ for some $n>0$.

Example 2 Consider the biring $R=R_{1} \cup R_{2}$, where $R_{1}=\mathcal{Z}$ and $R_{2}=\{0,2,4,6\}$ a subset of \mathcal{Z}_{8}.
(1) If $S_{1}=4 \mathcal{Z}$ and $S_{2}=\{0,4\}$, then S_{1} is a subring of R_{1} and S_{2} is a subring of R_{2}. Thus, $S=S_{1} \cup S_{2}$ is a bi-subring of R since $S_{1}=S \cap R_{1}$ and $S_{2}=S \cap R_{2}$.
(2) If $S_{1}=3 \mathcal{Z}$ and $S_{2}=\{0,4\}$, then $S=S_{1} \cup S_{2}$ is a biring but not a bi-subring of R because $S_{1} \neq S \cap R_{1}$ and $S_{2} \neq S \cap R_{2}$. This can only happen in a biring structure.

Theorem 2.9 Let $R=R_{1} \cup R_{2}$ and $S=S_{1} \cup S_{2}$ be any two birings and let $I=I_{1} \cup I_{2}$ and $J=J_{1} \cup J_{2}$ be sub-birings of R and S, respectively. Then,
(1) $R \times S=\left(R_{1} \times S_{1}\right) \cup\left(R_{2} \times S_{2}\right)$ is a biring;
(2) $I \times J=\left(I_{1} \times J_{1}\right) \cup\left(I_{2} \times J_{2}\right)$ is a sub-biring of $R \times S$.

Definition 2.10 Let $R=R_{1} \cup R_{2}$ be a biring and let I be a non-empty subset of R.
(1) I is a right bi-ideal of R if $I=I_{1} \cup I_{2}$, where I_{1} is a right ideal of R_{1} and I_{2} is a right ideal of R_{2};
(2) I is a left bi-ideal of R if $I=I_{1} \cup I_{2}$, where I_{1} is a left ideal of R_{1} and I_{2} is a left ideal of R_{2};
(3) $I=I_{1} \cup I_{2}$ is a bi-ideal of R if I_{1} is an ideal of R_{1} and I_{2} is an ideal of R_{2}.

Definition 2.11 Let $R=R_{1} \cup R_{2}$ be a biring and let I be a non-empty subset of R. Then, $I=I_{1} \cup I_{2}$ is a mixed bi-ideal of R if I_{1} is a right (left) ideal of R_{1} and I_{2} is a left (right) ideal of R_{2}.

Theorem 2.12 Let $I=I_{1} \cup I_{2}, J=J_{1} \cup J_{2}$ and $K=K_{1} \cup K_{2}$ be left (right) bi-ideals of a biring $R=R_{1} \cup R_{2}$. Then,
(1) $I J=\left(I_{1} J_{1}\right) \cup\left(I_{2} J_{2}\right)$ is a left(right) bi-ideal of R;
(2) $I \cap J=\left(I_{1} \cap J_{1}\right) \cup\left(I_{2} \cap J_{2}\right)$ is a left(right) bi-ideal of R;
(3) $I+J=\left(I_{1}+J_{1}\right) \cup\left(I_{2}+J_{2}\right)$ is a left(right) bi-ideal of R;
(4) $I \times J=\left(I_{1} \times J_{1}\right) \cup\left(I_{2} \times J_{2}\right)$ is a left(right) bi-ideal of R;
(5) $(I J) K=\left(\left(I_{1} J_{1}\right) K_{1}\right) \cup\left(\left(I_{2} J_{2}\right) K_{2}\right)=I(J K)=\left(I_{1}\left(J_{1} K_{1}\right)\right) \cup\left(I_{2}\left(J_{2} K_{2}\right)\right)$;
(6) $I(J+K)=\left(I_{1}\left(J_{1}+K_{1}\right)\right) \cup\left(I_{2}\left(J_{2}+K_{2}\right)\right)=I J+I K=\left(I_{1} J_{1}+I_{1} K_{1}\right) \cup\left(I_{2} J_{2}+I_{2} K_{2}\right)$;
(7) $(J+K) I=\left(\left(J_{1}+K_{1}\right) I_{1}\right) \cup\left(\left(J_{2}+K_{2}\right) I_{2}\right)=J I+K I=\left(J_{1} I_{1}+K_{1} I_{1}\right) \cup\left(J_{2} I_{2}+K_{2} I_{2}\right)$.

Example 3 Let R be the collection of all 2×2 upper triangular and lower triangular matrices over a field F and let

$$
\begin{aligned}
& R_{1}=\left\{\left[\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right]: a, b, c \in F\right\}, \\
& R_{2}=\left\{\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]: a, b, c \in F\right\}, \\
& I_{1}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]: a \in F\right\}, \\
& I_{2}=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right]: a \in F\right\} .
\end{aligned}
$$

Then, $R=R_{1} \cup R_{2}$ is a non-commutative biring with a mono-unit $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $I=I_{1} \cup I_{2}$ is a right bi-ideal of $R=R_{1} \cup R_{2}$.

Definition 2.13 Let $R=R_{1} \cup R_{2}$ and $S=S_{1} \cup S_{2}$ be any two birings. The mapping $\phi: R \rightarrow S$
is called a biring homomorphism if $\phi=\phi_{1} \cup \phi_{2}$ and $\phi_{1}: R_{1} \rightarrow S_{1}$ and $\phi_{2}: R_{2} \rightarrow S_{2}$ are ring homomorphisms. If $\phi_{1}: R_{1} \rightarrow S_{1}$ and $\phi_{2}: R_{2} \rightarrow S_{2}$ are ring isomorphisms, then $\phi=\phi_{1} \cup \phi_{2}$ is a biring isomorphism and we write $R=R_{1} \cup R_{2} \cong S=S_{1} \cup S_{2}$. The image of ϕ denoted by Im $\phi=$ $\operatorname{Im} \phi_{1} \cup \operatorname{Im} \phi_{2}=\left\{y_{1} \in S_{1}, y_{2} \in S_{2}: y_{1}=\phi_{1}\left(x_{1}\right), y_{2}=\phi_{2}\left(x_{2}\right)\right.$ for some $\left.x_{1} \in R_{1}, x_{2} \in R_{2}\right\}$. The kernel of ϕ denoted by

$$
\operatorname{Ker} \phi=\operatorname{Ker} \phi_{1} \cup \operatorname{Ker} \phi_{2}=\left\{a_{1} \in R_{1}, a_{2} \in R_{2}: \phi_{1}\left(a_{1}\right)=0 \text { and } \phi_{2}\left(a_{2}\right)=0\right\} .
$$

Theorem 2.14 Let $R=R_{1} \cup R_{2}$ and $S=S_{1} \cup S_{2}$ be any two birings and let $\phi=\phi_{1} \cup \phi_{2}: R \rightarrow S$ be a biring homomorphism. Then,
(1) Im $\boldsymbol{I m}$ is a sub-biring of the biring S;
(2) Kert is a bi-ideal of the biring R;
(3) $\operatorname{Ker} \phi=\{0\}$ if and only if $\phi_{i}, i=1,2$ are injective.

Proof (1) It is clear that $\operatorname{Im} \phi=\operatorname{Im} \phi_{1} \cup \operatorname{Im} \phi_{2}$, where $\phi_{1}: R_{1} \rightarrow S_{1}$ and $\phi_{2}: R_{2} \rightarrow S_{2}$ are ring homomorphisms, is not an empty set. Since $\operatorname{Im} \phi_{1}$ is a subring of S_{1} and $\operatorname{Im} \phi_{2}$ is a subring of S_{2}, it follows that $\operatorname{Im} \phi=\operatorname{Im} \phi_{1} \cup \operatorname{Im} \phi_{2}$ is a biring. Lastly, it can easily be shown that $\operatorname{Im} \phi \cap S_{1}=\operatorname{Im} \phi_{1}, \operatorname{Im} \phi \cap S_{2}=\operatorname{Im} \phi_{2}$ and consequently, $\operatorname{Im} \phi=\operatorname{Im} \phi_{1} \cup \operatorname{Im} \phi_{2}$ is a sub-biring of the biring $S=S_{1} \cup S_{2}$.
(2) The proof is similar to (1).
(3) It is clear.

Let $I=I_{1} \cup I_{2}$ be a left bi-ideal of a biring $R=R_{1} \cup R_{2}$. We know that R_{1} / I_{1} and R_{2} / I_{2} are factor rings and therefore $\left(R_{1} / I_{1}\right) \cup\left(R_{2} / I_{2}\right)$ is a biring called factor-biring. Since $\phi_{1}: R_{1} \rightarrow R_{1} / I_{1}$ and $\phi_{2}: R_{2} \rightarrow R_{2} / I_{2}$ are natural homomorphisms with kernels I_{1} and I_{2}, respectively, it follows that $\phi_{1} \cup \phi_{2}=\phi: R \rightarrow R / I$ is a natural biring homomorphism whose kernel is $\operatorname{Ker} \phi=I_{1} \cup I_{2}$.

Theorem 2.15(First Isomorphism Theorem) Let $R=R_{1} \cup R_{2}$ and $S=S_{1} \cup S_{2}$ be any two birings and let $\phi_{1} \cup \phi_{2}=\phi: R \rightarrow S$ be a biring homomorphism with kernel $K=K e r \phi=$ $K e r \phi_{1} \cup \operatorname{Ker} \phi_{2}$. Then, $R / K \cong \operatorname{Im} \phi$.

Proof Suppose that $R=R_{1} \cup R_{2}$ and $S=S_{1} \cup S_{2}$ are birings and suppose that $\phi_{1} \cup \phi_{2}=\phi$: $R \rightarrow S$ is a biring homomorphism with kernel $K=\operatorname{Ker} \phi=\operatorname{Ker} \phi_{1} \cup \operatorname{Ker} \phi_{2}$. Then, K is a biideal of $R, \operatorname{Im} \phi=\operatorname{Im} \phi_{1} \cup \operatorname{Im} \phi_{2}$ is a bi-subring of S and $R / K=\left(R_{1} / \operatorname{Ker} \phi_{1}\right) \cup\left(R_{2} / \operatorname{Ker} \phi_{2}\right)$ is a biring. From the classical rings (first isomorphism theorem), we have $R_{i} / \operatorname{Ker} \phi_{i} \cong \operatorname{Im} \phi_{i}, i=1,2$ and therefore, $R / K=\left(R_{1} / \operatorname{Ker} \phi_{1}\right) \cup\left(R_{2} / \operatorname{Ker} \phi_{2}\right) \cong \operatorname{Im} \phi=\operatorname{Im} \phi_{1} \cup \operatorname{Im} \phi_{2}$.

Theorem 2.16(Second Isomorphism Theorem) Let $R=R_{1} \cup R_{2}$ be a biring. If $S=S_{1} \cup S_{2}$ is a sub-biring of R and $I=I_{1} \cup I_{2}$ is a bi-ideal of R, then
(1) $S+I$ is a sub-biring of R;
(2) I is a bi-ideal of $S+I$;
(3) $S \cap I$ is a bi-ideal of S;
(4) $(S+I) / I \cong S /(S \cap I)$.

Proof Suppose that $R=R_{1} \cup R_{2}$ is a biring, $S=S_{1} \cup S_{2}$ a sub-biring and $I=I_{1} \cup I_{2}$ a bi-ideal of R.
(1) $S+I=\left(S_{1}+I_{1}\right) \cup\left(S_{2}+I_{2}\right)$ is a biring since $S_{i}+I_{i}$ are subrings of R_{i}, where $i=1,2$. Now, $R_{1} \cap(S+I)=\left(R_{1} \cap\left(S_{1}+I_{1}\right)\right) \cup\left(R_{1} \cap\left(S_{2}+I_{2}\right)\right)=S_{1}+I_{1}$. Similarly, we have $R_{2} \cap(S+I)=S_{2}+I_{2}$. Thus, $S+I$ is a sub-biring of R.
(2) and (3) are clear.
(4) It is clear that $(S+I) / I=\left(\left(S_{1}+I_{1}\right) / I_{1}\right) \cup\left(\left(S_{2}+I_{2}\right) / I_{2}\right)$ is a biring since $\left(S_{1}+I_{1}\right) / I_{1}$ and $\left(S_{2}+I_{2}\right) / I_{2}$ are rings. Similarly, $S /(S \cap I)=\left(S_{1} /\left(S_{1} \cap I_{1}\right)\right) \cup\left(S_{2} /\left(S_{2} \cap I_{2}\right)\right)$ is a biring. Consider the mapping $\phi=\phi_{1} \cup \phi_{2}: S_{1} \cup S_{2} \rightarrow\left(\left(S_{1}+I_{1}\right) / I_{1}\right) \cup\left(\left(S_{2}+I_{2}\right) / I_{2}\right)$. It is clear that ϕ is a biring homomorphism since $\phi_{i}: S_{i} \rightarrow\left(S_{i}+I_{i}\right) / I_{i}, i=1,2$ are ring homomorphisms. Also, since $\operatorname{Ker} \phi_{i}=S_{i} \cap I_{i}, i=1,2$, it follows that $\operatorname{Ker} \phi=\left(S_{1} \cap I_{1}\right) \cup\left(S_{2} \cap I_{2}\right)$. The required result follows from the first isomorphism theorem.

Theorem 2.17(Third Isomorphism Theorem) Let $R=R_{1} \cup R_{2}$ be a biring and let $I=I_{1} \cup I_{2}$ and $J=J_{1} \cup J_{2}$ be two bi-ideals of R such that $J_{i} \subseteq I_{i}, i=1,2$. Then,
(1) I / J is a bi-ideal of R / J;
(2) $R / I \cong(R / J) /(I / J)$.

Proof Suppose that $I=I_{1} \cup I_{2}$ and $J=J_{1} \cup J_{2}$ are two bi-ideals of the biring $R=R_{1} \cup R_{2}$ such that $J_{i} \subseteq I_{i}, i=1,2$.
(1) It is clear that $R / J=\left(R_{1} / J_{1}\right) \cup\left(R_{2} / J_{2}\right)$ and $I / J=\left(I_{1} / J_{1}\right) \cup\left(I_{2} / J_{2}\right)$ are birings. Now, $\left(R_{1} / J_{1}\right) \cap\left(\left(I_{1} / J_{1}\right) \cup\left(I_{2} / J_{2}\right)\right)=\left(\left(R_{1} / J_{1}\right) \cap\left(I_{1} / J_{1}\right)\right) \cup\left(\left(R_{1} / J_{1}\right) \cap\left(I_{2} / J_{2}\right)\right)=I_{1} / J_{1}$ (since $\left.J_{i} \subseteq I_{i} \subseteq R_{i}, i=1,2\right)$. Similarly, $\left(R_{2} / J_{2}\right) \cap\left(\left(I_{1} / J_{1}\right) \cup\left(I_{2} / J_{2}\right)\right)=I_{2} / J_{2}$. Consequently, I / J is a sub-biring of R / J and in fact a bi-ideal.
(2) Let us consider the mapping $\phi=\phi_{1} \cup \phi_{2}:\left(R_{1} / J_{1}\right) \cup\left(R_{2} / J_{2}\right) \rightarrow\left(R_{1} / I_{1}\right) \cup\left(R_{2} / I_{2}\right)$. Since $\phi_{i}: R_{i} / J_{i} \rightarrow R_{i} / I_{i}, i=1,2$ are ring homomorphisms with $\operatorname{Ker} \phi_{i}=I_{i} / J_{i}$, it follows that $\phi=\phi_{1} \cup \phi_{2}$ is a biring homomorphism and $\operatorname{Ker} \phi=\operatorname{Ker} \phi_{1} \cup \operatorname{Ker} \phi_{2}=\left(I_{1} / J_{1}\right) \cup\left(I_{2} / J_{2}\right)$. Applying the first isomorphism theorem, we have $\left(\left(R_{1} / J_{1}\right) /\left(I_{1} / J_{1}\right)\right) \cup\left(\left(R_{2} / J_{2}\right) /\left(I_{2} / J_{2}\right)\right) \cong$ $\left(R_{1} / I_{1}\right) \cup /\left(R_{2} / I_{2}\right)$.

Definition 2.18 Let $R=R_{1} \cup R_{2}$ be a biring and let $I=I_{1} \cup I_{2}$ be a bi-ideal of R. Then,
(1) I is said to be a principal bi-ideal of R if I_{1} is a principal ideal of R_{1} and I_{2} is a principal ideal of R_{2};
(2) I is said to be a maximal (minimal) bi-ideal of R if I_{1} is a maximal (minimal) ideal of R_{1} and I_{2} is a maximal (minimal) ideal of R_{2};
(3) I is said to be a primary bi-ideal of R if I_{1} is a primary ideal of R_{1} and I_{2} is a primary ideal of R_{2};
(4) I is said to be a prime bi-ideal of R if I_{1} is a prime ideal of R_{1} and I_{2} is a prime ideal of R_{2}.

Example 4 Let $R=R_{1} \cup R_{2}$ be a biring, where $R_{1}=\mathcal{Z}$, the ring of integers and $R_{2}=\mathcal{R}[x]$, the ring of polynomials over \mathcal{R}. Let $I_{1}=(2)$ and $I_{2}=\left(x^{2}+1\right)$. Then, $I=I_{1} \cup I_{2}$ is a principal bi-ideal of R.

Definition 2.19 Let $R=R_{1} \cup R_{2}$ be a biring and let $I=I_{1} \cup I_{2}$ be a bi-ideal of R. Then, I is said to be a quasi maximal (minimal) bi-ideal of R if I_{1} or I_{2} is a maximal (minimal) ideal.

Definition 2.20 Let $R=R_{1} \cup R_{2}$ be a biring. Then, R is said to be a simple biring if R has no non-trivial bi-ideals.

Theorem 2.21 Let $\phi=\phi_{1} \cup \phi_{2}: R \rightarrow S$ be a biring homomorphism. If $J=J_{1} \cup J_{2}$ is a prime bi-ideal of S, then $\phi^{-1}(J)$ is a prime bi-ideal of R.

Proof Suppose that $J=J_{1} \cup J_{2}$ is a prime bi-ideal of S. Then, $J_{i}, i=1,2$ are prime ideals of S_{i}. Since $\phi^{-1}\left(J_{i}\right), i=1,2$ are prime ideals of R_{i}, we have $I=\phi^{-1}\left(J_{1}\right) \cup \phi^{-1}\left(J_{2}\right)$ to be a prime bi-ideal of R.

Definition 2.22 Let $R=R_{1} \cup R_{2}$ be a commutative biring. Then,
(1) R is said to be a bidomain if R_{1} and R_{2} are integral domains;
(2) R is said to be a pseudo bidomain if R_{1} and R_{2} are integral domains but R has zero divisors;
(3) R is said to be a bifield if R_{1} and R_{2} are fields. If R is finite, we call R a finite bifield. R is said to be a bifield of finite characteristic if the characteristic of both R_{1} and R_{2} are finite. We call R a bifield of characteristic zero if the characteristic of both R_{1} and R_{2} is zero. No characteristic is associated with R if R_{1} or R_{2} is a field of zero characteristic and one of R_{1} or R_{2} is of some finite characteristic.

Definition 2.23 Let $R=R_{1} \cup R_{2}$ be a biring. Then, R is said to be a bidivision ring if R is non-commutative and has no zero-divisors that is R_{1} and R_{2} are division rings.

Example 5 (1) Let $R=R_{1} \cup R_{2}$, where $R_{1}=\mathcal{Z}$ and $R_{2}=\mathcal{R}[x]$ the ring of integers and the ring of polynomials over \mathcal{R}, respectively. Since R_{1} and R_{2} are integral domains, it follows that R is a bidomain.
(2) The biring $R=R_{1} \cup R_{2}$ of Example 1 is a pseudo bidomain.
(3) Let $F=F_{1} \cup F_{2}$ where $F_{1}=\mathcal{Q}\left(\sqrt{p_{1}}\right), F_{2}=\mathcal{Q}\left(\sqrt{p_{2}}\right)$ where $p_{i}, i=1,2$ are different primes. Since F_{1} and F_{2} are fields of zero characteristics, it follows that F is a bi-field of zero characteristic.

Theorem 2.24 Let $R=R_{1} \cup R_{2}$ be a biring. Then, R is a bidomain if and only if the zero bi-ideal $(0)=\left(0_{1}\right) \cup\left(0_{2}\right)$ is a prime bi-ideal.

Proof Suppose that R is a bidomain. Then, $R_{i}, i=1,2$ are integral domains. Since the zero ideals $\left(0_{i}\right)$ in R_{i} are prime, it follows that $(0)=\left(0_{1}\right) \cup\left(0_{2}\right)$ is a prime bi-ideal.

Conversely, suppose that $(0)=\left(0_{1}\right) \cup\left(0_{2}\right)$ is a prime bi-ideal. Then, $\left(0_{i}\right), i=1,2$ are prime ideals in R_{i} and hence $R_{i}, i=1,2$ are integral domains. Thus $R=R_{1} \cup R_{2}$ is a bidomain.

Theorem 2.25 Let $F=F_{1} \cup F_{2}$ be a bi-field. Then, $F[x]=F_{1}[x] \cup F_{2}[x]$ is a bidomain.
Proof Since F_{1} and F_{2} are fields which are integeral domains, it follows that $F_{1}[x]$ and $F_{2}[x]$ are integral domains and consequently, $F[x]=F_{1}[x] \cup F_{2}[x]$ is a bidomain.

§3. Further Properties of Birings

Except otherwise stated in this section, all birings are assumed to be commutative with zero and unit elements.

Theorem 3.1 Let R be any ring and let S_{1} and S_{2} be any two distinct subrings of R. Then, $S=S_{1} \cup S_{2}$ is a biring.

Proof Suppose that S_{1} and S_{2} are two distinct subrings of R. Then, $S_{1} \nsubseteq S_{2}$ or $S_{2} \nsubseteq S_{1}$ but $S_{1} \cap S_{2} \neq \emptyset$. Since S_{1} and S_{2} are rings under the same operations inherited from R, it follows that $S=S_{1} \cup S_{2}$ is a biring.

Corollary 3.2 Let R_{1} and R_{2} be any two unrelated rings that is $R_{1} \nsubseteq R_{2}$ or $R_{2} \nsubseteq R_{1}$ but $R_{1} \cap R_{2} \neq \emptyset$. Then, $R=R_{1} \cup R_{2}$ is a biring.

Example 6 (1) Let $R=\mathcal{Z}$ and let $S_{1}=2 \mathcal{Z}, S_{2}=3 \mathcal{Z}$. Then, $S=S_{1} \cup S_{2}$ is a biring.
(2) Let $R_{1}=\mathcal{Z}_{2}$ and $R_{2}=\mathcal{Z}_{3}$ be rings of integers modulo 2 and 3, respectively. Then, $R=R_{1} \cup R_{2}$ is a biring.

Example 7 Let $R=R_{1} \cup R_{2}$ be a biring, where $R_{1}=\mathcal{Z}$, the ring of integers and $R_{2}=C[0,1]$, the ring of all real-valued continuous functions on $[0,1]$. Let $I_{1}=(p)$, where p is a prime number and let $I_{2}=\left\{f(x) \in R_{2}: f(x)=0\right\}$. It is clear that I_{1} and I_{2} are maximal ideals of R_{1} and R_{2}, respectively. Hence, $I=I_{1} \cup I_{2}$ is a maximal bi-ideal of R.

Theorem 3.3 Let $R=\{0, a, b\}$ be a set under addition and multiplication modulo 2. Then, R is a biring if and only if a and $b(a \neq b)$ are idempotent (nilpotent) in R.

Proof Suppose that $R=\{0, a, b\}$ is a set under addition and multiplication modulo 2 and suppose that a and b are idempotent (nilpotent) in R. Let $R_{1}=\{0, a\}$ and $R_{2}=\{0, b\}$, where $a \neq b$. Then, R_{1} and R_{2} are rings and hence $R=R_{1} \cup R_{2}$ is a biring. The proof of the converse is clear.

Corollary 3.4 There exists a biring of order 3.
Theorem 3.5 Let $R=R_{1} \cup R_{2}$ be a finite bidomain. Then, R is a bi-field.
Proof Suppose that $R=R_{1} \cup R_{2}$ is a finite bidomain. Then, each $R_{i}, i=1,2$ is a finite integral domain which is a field. Therefore, R is a bifield.

Theorem 3.6 Let $R=R_{1} \cup R_{2}$ be a bi-field. Then, R is a bidomain.
Proof Suppose that $R=R_{1} \cup R_{2}$ is a bi-field. Then, each $R_{i}, i=1,2$ is a field which is an integral domain. The required result follows from the definition of a bidomain.

Remark 1 Every finite bidivision ring is a bi-field.
Indeed, suppose that $R=R_{1} \cup R_{2}$ is a finite bidivision ring. Then, each $R_{i}, i=1,2$ is a
finite division ring which is a field. Consequently, R is a bi-field.

Theorem 3.7 Every biring in general need not have bi-ideals.
Proof Suppose that $R=R_{1} \cup R_{2}$ is a biring and suppose that $I_{i}, i=1,2$ are ideals of R_{i}. If $I=I_{1} \cup I_{2}$ is such that $I_{i} \neq I \cap R_{i}$, where $i=1,2$, then I cannot be a bi-ideal of R.

Corollary 3.8 Let $R=R_{1} \cup R_{2}$ be a biring and let $I=I_{1} \cup I_{2}$, where $I_{i}, i=1,2$ are ideals of R_{i}. Then, I is a bi-ideal of R if and only if $I_{i}=I \cap R_{i}$, where $i=1,2$.

Corollary 3.9 A biring $R=R_{1} \cup R_{2}$ may not have a maximal bi-ideal.
Theorem 3.10 Let $R=R_{1} \cup R_{2}$ be a biring and let $M=M_{1} \cup M_{2}$ be a bi-ideal of R. Then, R / M is a bi-field if and only if M is a maximal bi-ideal.

Proof Suppose that M is a maximal bi-ideal of R. Then, each $M_{i}, i=1,2$ is a maximal ideal in $R_{i}, i=1,2$ and consequently, each R_{i} / I_{i} is a field and therefore R / M is a bi-field.

Conversely, suppose that R / M is a bi-field. Then, each $R_{i} / M_{i}, i=1,2$ is a field so that each $M_{i}, i=1,2$ is a maximal ideal in R_{i}. Hence, $M=I_{1} \cup I_{2}$ is a maximal bi-ideal.

Theorem 3.11 Let $R=R_{1} \cup R_{2}$ be a biring and let $P=P_{1} \cup P_{2}$ be a bi-ideal of R. Then, R / P is a bidomain if and only if P is a prime bi-ideal.

Proof Suppose that P is a prime bi-ideal of R. Then, each $P_{i}, i=1,2$ is a prime ideal in $R_{i}, i=1,2$ and so, each R_{i} / P_{i} is an integral domain and therefore R / P is a bidomain.

Conversely, suppose that R / P is a bidomain. Then, each $R_{i} / P_{i}, i=1,2$ is an integral domain and therefore each $P_{i}, i=1,2$ is a prime ideal in R_{i}. Hence, $P=P_{1} \cup P_{2}$ is a prime bi-ideal.

Theorem 3.12 Let $R=R_{1} \cup R_{2}$ be a biring and let $I=I_{1} \cup I_{2}$ be a bi-ideal of R. If I is maximal, then I is prime.

Proof Suppose that I is maximal. Then, $I_{i}, i=1,2$ are maximal ideals of R_{i} so that R_{i} / I_{i} are fields which are integral domains. Thus, $R / I=\left(R_{1} / I_{1}\right) \cup\left(R_{2} / I_{2}\right)$ is a bidomain and by Theorem 3.11, $I=I_{1} \cup I_{2}$ is a prime bi-ideal.

Theorem 3.13 Let $\phi: R \rightarrow S$ be a biring homomorphism from a biring $R=R_{1} \cup R_{2}$ onto a biring $S=S_{1} \cup S_{2}$ and let $K=K e r \phi_{1} \cup K e r \phi_{2}$ be the kernel of ϕ.
(1) If S is a bi-field, then K is a maximal bi-ideal of R;
(2) If S is a bidomain, then K is a prime bi-ideal of R.

Proof By Theorem 2.7, we have $R / K=\left(R_{1} / \operatorname{Ker} \phi_{1}\right) \cup\left(R_{2} / \operatorname{Ker} \phi_{2}\right) \cong \operatorname{Im} \phi=\operatorname{Im} \phi_{1} \cup$ $\operatorname{Im} \phi_{2}=S_{1} \cup S_{2}=S$. The required results follow by applying Theorems 3.10 and 3.11.

Definition 3.14 Let $R=R_{1} \cup R_{2}$ be a biring and let $N(R)$ be the set of nilpotent elements of R. Then, $N(R)$ is called the bi-nilradical of R if $N(R)=N\left(R_{1}\right) \cup N\left(R_{2}\right)$, where $N\left(R_{i}\right)$,
$i=1,2$ are the nilradicals of R_{i}.
Theorem 3.15 Let $R=R_{1} \cup R_{2}$ be a biring. Then, $N(R)$ is a bi-ideal of R.
Proof $N(R)$ is non-empty since $0_{1} \in N\left(R_{1}\right)$ and $0_{2} \in N\left(R_{2}\right)$. Now, if $x=x_{1} \cup x_{2}, y_{1} \cup y_{2} \in$ $N(R)$ and $r=r_{1} \cup r_{2} \in R$ where $x_{i}, y_{i} \in N\left(R_{i}\right), r_{i} \in R_{i}, i=1,2$, then it follows that $x-y, x r \in N(R)$. Lastly, $R_{1} \cap\left(N\left(R_{1}\right) \cup N\left(R_{2}\right)\right)=\left(R_{1} \cap N\left(R_{1}\right)\right) \cup\left(R_{1} \cap N\left(R_{2}\right)\right)=N\left(R_{1}\right)$. Similarly, we have $R_{2} \cap\left(N\left(R_{1}\right) \cup N\left(R_{2}\right)\right)=N\left(R_{2}\right)$. Hence, $N(R)$ is a bi-ideal.

Definition 3.16 Let $I=I_{1} \cup I_{2}$ and $J=J_{1} \cup J_{2}$ be any two bi-ideals of a biring $R=R_{1} \cup R_{2}$. The set $(I: J)$ is called a bi-ideal quotient of I and J if $(I: J)=\left(I_{1}: J_{1}\right) \cup\left(I_{2}: J_{2}\right)$, where $\left(I_{i}: J_{i}\right), i=1,2$ are ideal quotients of I_{i} and J_{i}. If $I=(0)=\left(0_{1}\right) \cup\left(0_{2}\right)$, a zero bi-ideal, then $((0): J)=\left(\left(0_{1}\right): J_{1}\right) \cup\left(\left(0_{2}\right): J_{2}\right)$ which is called a bi-annihilator of J denoted by $\operatorname{Ann}(J)$. If $0 \neq x \in R_{1}$ and $0 \neq y \in R_{2}$, then $Z\left(R_{1}\right)=\bigcup_{x} \operatorname{Ann}(x)$ and $Z\left(R_{2}\right)=\bigcup_{y} \operatorname{Ann}(y)$, where $Z\left(R_{i}\right), i=1,2$ are the sets of zero-divisors of R_{i}.

Theorem 3.17 Let $R=R_{1} \cup R_{2}$ be a biring and let $I=I_{1} \cup I_{2}$ and $J=J_{1} \cup J_{2}$ be any two bi-ideals of R. Then, $(I: J)$ is a bi-ideal of R.

Proof For $0=0_{1} \cup 0_{2} \in R$, we have $0_{1} \in\left(I_{1}: J_{1}\right)$ and $0_{2} \in\left(I_{2}: J_{2}\right)$ so that $(I: J) \neq \emptyset$. If $x=x_{1} \cup x_{2}, y=y_{1} \cup y_{2} \in(I: J)$ and $r=r_{1} \cup r_{2} \in R$, then $x-y, x r \in(I: J)$ since $\left(I_{i}: J_{i}\right), i=1,2$ are ideals of R_{i}. It can be shown that $R_{1} \cap\left(\left(I_{1}: J_{1}\right) \cup\left(I_{2}: J_{2}\right)\right)=\left(I_{1}: J_{1}\right)$ and $R_{2} \cap\left(\left(I_{1}: J_{1}\right) \cup\left(I_{2}: J_{2}\right)\right)=\left(I_{2}: J_{2}\right)$. Accordingly, $(I: J)$ is a bi-ideal of R.

Example 8 Under addition and multplication modulo 6, consider the biring $R=\{0,2,3,4\}$, where $R_{1}=\{0,3\}$ and $R_{2}=\{0,2,4\}$. It is clear that $Z(R) \neq Z\left(R_{1}\right) \cup Z\left(R_{2}\right)$. Hence, for $0 \neq z=x \cup y \in R, 0 \neq x \in R_{1}$ and $0 \neq y \in R_{2}$, we have

$$
\bigcup_{z=x \cup y} A n n(z) \neq\left(\bigcup_{x} A n n(x)\right) \cup\left(\bigcup_{y} A n n(y)\right) .
$$

Definition 3.18 Let $I=I_{1} \cup I_{2}$ be any bi-ideal of a biring $R=R_{1} \cup R_{2}$. The set $r(I)$ is called a bi-radical of I if $r(I)=r\left(I_{1}\right) \cup r\left(I_{2}\right)$, where $r\left(I_{i}\right), i=1,2$ are radicals of I_{i}. If $I=(0)=\left(0_{1}\right) \cup\left(0_{2}\right)$, then $r(I)=N(R)$.

Theorem 3.19 If $R=R_{1} \cup R_{2}$ is a biring and $I=I_{1} \cup I_{2}$ is a bi-ideal of R, then $r(I)$ is a bi-ideal.

References

[1] Agboola A.A.A. and Akinola L.S., On the Bicoset of a Bivector Space, Int. J. Math. Comb., 4(2009), 1-8.
[2] Davvaz B., Fundamentals of Ring Theory, Yazd University, Yazd, 2006.
[3] Jun Young Bae, Biideals in BCK/BCI-bialgebras, Kyungpook Math. J., 48(2008), 577-584.
[4] Jun Young Bae and Lee Kyoung Ja., Ideal theory in BCK/BCI-bialgebras, Adv. Stud. Contemp. Math. (Kyungshang) 20(2010), 481-488.
[5] Jun Young Bae, Öztürk, Mehmet Ali and Roh Eun Hwan, BCK/BCI-bialgebras, Sci. Math. Jpn., 64(2006), 595-600.
[6] Maggu P.L., On Introduction of Bigroup Concept with its Applications in Industry, Pure and App. Math Sci., 39(1994), 171-173.
[7] Maggu P.L. and Rajeev K., On Sub-bigroup and its Applications in Industry, Pure and App. Math Sci., 43(1996), 85-88.
[8] Smarandache F., Special Algebraic Structures, in Collected Papers, Abaddaba, Oradea, 3(2000), 78-81.
[9] Vasantha Kandasamy W.B., Bialgebraic Structures and Smarandache Bialgebraic Structures, American Research Press, Rehoboth, 2003. http://www.gallup.unm.edu/ smarandache /eBooks-otherformats.htm.
[10] Vasantha Kandasamy W.B., Bivector Spaces, U. Sci. Phy. Sci., 11(1999), 186-190.

[^0]: ${ }^{1}$ Reported at the First International Conference on Smarandache Multispaces and Multistructures, June 28-30,2013, Beijing, P.R.China.
 ${ }^{2}$ Received April 13, 2013, Accepted June 8, 2013

