Pseudo-Smarandache Functions of First and Second Kind

A.S.Muktibodh and S.T.Rathod
Mohota Science College, Umred Rd., Nagpur, India
E-mail: amukti2000@yahoo.com, satish.rathod12@yahoo.com

Abstract

In this paper we define two kinds of pseudo-Smarandache functions. We have investigated more than fifty terms of each pseudo-Smarandache function. We have proved some interesting results and properties of these functions.

Key Words: pseudo-Smarandache function, number, prime.
AMS(2010): 11P83

§1. Introduction

The pseudo-Smarandache function $Z(n)$ was introduced by Kashihara [4] as follows:
Definition 1.1 For any integer $n \geq 1, Z(n)$ is the smallest positive integer m such that $1+$ $2+3+\ldots m$ is divisible by n.

Alternately, $Z(n)=\min \left\{m: m \in N: n \left\lvert\, \frac{m(m+1)}{2}\right.\right\}$.
The main results and properties of pseudo-Smarandache functions are available in [3]-[5]. We noticed that the sum $1+2+3+\ldots+m$ can be replaced by the series of squares of first m natural numbers and the cubes of first m natural numbers respectively, to get the pseudoSmarandache functions of first kind and second kind.

In the following we define pseudo-Smarandache functions of first kind and second kind.
Definition 1.2 For any integer $n \geq 1$, the pseudo-Smarandache function of first kind, $Z_{1}(n)$ is the smallest positive integer m such that $1^{2}+2^{2}+3^{2} \ldots+m^{2}$ is divisible by n.

Alternately, $Z_{1}(n)=\min \left\{m: m \in N: n \left\lvert\, \frac{m(m+1)(2 m+1)}{6}\right.\right\}$.
Definition 1.3 For any integer $n \geq 1$, the pseudo-Smarandache function of second kind, $Z_{2}(n)$ is the smallest positive integer m such that $1^{3}+2^{3}+3^{3} \ldots+m^{3}$ is divisible by n.

Alternately, $Z_{2}(n)=\min \left\{m: m \in N: n \left\lvert\, \frac{m^{2}(m+1)^{2}}{4}\right.\right\}$.

[^0]For ready reference we give below some values of $S(m)$ s and $Z_{1}(n)$ s, where $S(m)$ stands for the sum of the squares of first m natural numbers and $Z_{1}(n)$ stands for the pseudo-Smarandache function of first kind for the value n for $n \in N$.

Values of $S(m)$

$S(1)=1$	$S(15)=1240$	$S(29)=8555$	$S(43)=27434$
$S(2)=5$	$S(16)=1496$	$S(30)=9455$	$S(44)=29370$
$S(3)=14$	$S(17)=1785$	$S(31)=10416$	$S(45)=31395$
$S(4)=30$	$S(18)=2109$	$S(32)=11440$	$S(46)=33511$
$S(5)=55$	$S(19)=2470$	$S(33)=12529$	$S(47)=35726$
$S(6)=91$	$S(20)=2870$	$S(34)=13685$	$S(48)=38024$
$S(7)=140$	$S(21)=3311$	$S(35)=14910$	$S(49)=40425$
$S(8)=204$	$S(22)=3795$	$S(36)=16206$	$S(50)=42925$
$S(9)=285$	$S(23)=4324$	$S(37)=17575$	$S(51)=50882$
$S(10)=385$	$S(24)=4900$	$S(38)=19019$	$S(52)=48230$
$S(11)=506$	$S(25)=5525$	$S(39)=20540$	$S(53)=51039$
$S(12)=650$	$S(26)=6201$	$S(40)=22140$	$S(54)=53955$
$S(13)=819$	$S(27)=6930$	$S(41)=23821$	$S(55)=56980$
$S(14)=1015$	$S(28)=7714$	$S(42)=25585$	$S(56)=60116$

Values of $Z_{1}(n)$

$Z_{1}(1)=1$	$Z_{1}(14)=3$	$Z_{1}(27)=40$	$Z_{1}(40)=15$
$Z_{1}(2)=3$	$Z_{1}(15)=4$	$Z_{1}(28)=7$	$Z_{1}(41)=20$
$Z_{1}(3)=4$	$Z_{1}(16)=31$	$Z_{1}(29)=14$	$Z_{1}(42)=27$

$Z_{1}(4)=7$	$Z_{1}(43)=21$	$Z_{1}(17)=8$	$Z_{1}(30)=4$
$Z_{1}(5)=2$	$Z_{1}(18)=27$	$Z_{1}(31)=15$	$Z_{1}(44)=16$
$Z_{1}(6)=4$	$Z_{1}(19)=9$	$Z_{1}(32)=63$	$Z_{1}(45)=27$
$Z_{1}(7)=3$	$Z_{1}(20)=7$	$Z_{1}(33)=22$	$Z_{1}(46)=11$
$Z_{1}(8)=15$	$Z_{1}(21)=17$	$Z_{1}(34)=8$	$Z_{1}(47)=23$
$Z_{1}(9)=13$	$Z_{1}(22)=11$	$Z_{1}(35)=7$	$Z_{1}(48)=31$
$Z_{1}(10)=4$	$Z_{1}(23)=11$	$Z_{1}(36)=40$	$Z_{1}(49)=24$
$Z_{1}(11)=5$	$Z_{1}(24)=31$	$Z_{1}(37)=18$	$Z_{1}(50)=12$
$Z_{1}(12)=8$	$Z_{1}(25)=12$	$Z_{1}(38)=19$	$Z_{1}(51)=8$
$Z_{1}(13)=6$	$Z_{1}(26)=12$	$Z_{1}(39)=13$	$Z_{1}(52)=32$

§2. Some Results for Pseudo-Smarandache Functions of First Kind

Following results can be directly verified from the table given above.
(1) $Z_{1}(n)=1$ only if $n=1$.
(2) $Z_{1}(n) \geq 1$ for all $n \in N$.
(3) $Z_{1}(p) \leq p$, where p is a prime.
(4) If $Z_{1}(p)=n, p \neq 3$, then $p>n$.

Lemma 2.1 If p is a prime then $Z_{1}(p)=p+1$, for $p=2$ or 3 . Also, $Z_{1}(p)=\frac{p-1}{2}$ for $p \geq 5$.
Proof For $p=2$ and 3 , the verification is direct from the above table of $Z_{1}(n)$.
Let $S=1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{p-1}{2}\right)^{2}$. Then $S=\frac{p(p+1)(p-1)}{24}$. Hence p divides S. Also $p \nmid \frac{p-1}{2}$ as $\frac{p-1}{2}<p$. Let if possible (assumption) $p \mid 1^{2}+2^{2}+\ldots+m^{2}$ where $m<\frac{p-1}{2}$. But in that case p divides every summand of the sum S. But $p \nmid\left(\frac{p-1}{2}\right)^{2}$. Hence our assumption is wrong. Thus S is the minimum. Thus $Z_{1}(p)=\frac{p-1}{2}$

Lemma 2.2 For $p=2, Z_{1}\left(p^{k}\right)=p^{k+1}-1$.
Proof Straight verification confirms the result.

Lemma $2.3 Z_{1}(n) \geq \max \left\{Z_{1}(N): N \mid n\right\}$.
Proof Notice that in this case values of N are less than or equal to n and are divisors of n. Hence values of $Z_{1}(N)$ can not exceed $Z_{1}(n)$.

Lemma 2.4 Let $n=\frac{k(k+1)(2 k+1)}{6}$ for some $k \in N$, then $Z_{1}(n)=k$.
Proof The result is the immediate consequence of the fact that no previous value of $S(n)$ is divisible by k.

Lemma 2.5 It is not possible that $Z_{1}(m)=m$ for any $m \in N$.
Proof Let if possible $Z_{1}(m)=m$. Then by definition m is the smallest of the positive integer which divides $1^{2}+2^{2}+3^{2}+\ldots m^{2}$. Hence m does not divide $1^{2}+2^{2}+3^{2}+\ldots(m-1)^{2}$. Let $1^{2}+2^{2}+3^{2}+\ldots(m-1)^{2}=k$. So, m divides $k+m^{2}$. Hence m divides k, a contradiction.

Lemma 2.6 $S(m)=k$ then $S(m)=Z_{1}(2 k+1)$.
Here $S(n)$ will stand for the sum of the cubes of first n natural numbers. Please find the table following.

Values of $S(n)$			
$S(1)=1$	$S(15)=14400$	$S(29)=189225$	$S(43)=894916$
$S(2)=9$	$S(16)=18496$	$S(30)=216225$	$S(44)=980100$
$S(3)=36$	$S(17)=23409$	$S(31)=246016$	$S(45)=1071225$
$S(4)=100$	$S(18)=29241$	$S(32)=278784$	$S(46)=1168561$
$S(5)=225$	$S(19)=36100$	$S(33)=314721$	$S(47)=1272384$
$S(6)=441$	$S(20)=44100$	$S(34)=354025$	$S(48)=1382976$
$S(7)=784$	$S(21)=53361$	$S(35)=396900$	$S(49)=1500625$
$S(8)=1296$	$S(22)=64009$	$S(36)=443556$	$S(50)=1625625$
$S(9)=2025$	$S(23)=76176$	$S(37)=494209$	
$S(10)=3025$	$S(24)=90000$	$S(38)=549081$	

Values of $S(n)$ (continue)

$S(11)=4356$	$S(25)=105625$	$S(39)=608400$	
$S(12)=6084$	$S(26)=123201$	$S(40)=672400$	
$S(13)=8281$	$S(27)=142884$	$S(41)=741321$	
$S(14)=11025$	$S(28)=164836$	$S(42)=815409$	

Values of $Z_{2}(n)$

$Z_{2}(1)=1$	$Z_{2}(14)=7$	$Z_{2}(27)=8$	$Z_{2}(40)=15$
$Z_{2}(2)=3$	$Z_{2}(15)=5$	$Z_{2}(28)=7$	$Z_{2}(41)=40$
$Z_{2}(3)=2$	$Z_{2}(16)=7$	$Z_{2}(29)=28$	$Z_{2}(42)=20$
$Z_{2}(4)=3$	$Z_{2}(17)=16$	$Z_{2}(30)=15$	$Z_{2}(43)=42$
$Z_{2}(5)=4$	$Z_{2}(18)=3$	$Z_{2}(31)=30$	$Z_{2}(44)=111$
$Z_{2}(6)=3$	$Z_{2}(19)=18$	$Z_{2}(32)=15$	$Z_{2}(45)=5$
$Z_{2}(7)=6$	$Z_{2}(20)=4$	$Z_{2}(33)=11$	$Z_{2}(46)=23$
$Z_{2}(8)=7$	$Z_{2}(21)=6$	$Z_{2}(34)=16$	$Z_{2}(47)=46$
$Z_{2}(9)=2$	$Z_{2}(22)=11$	$Z_{2}(35)=14$	$Z_{2}(48)=8$
$Z_{2}(10)=4$	$Z_{2}(23)=22$	$Z_{2}(36)=3$	$Z_{2}(49)=6$
$Z_{2}(11)=10$	$Z_{2}(24)=15$	$Z_{2}(37)=36$	$Z_{2}(50)=4$
$Z_{2}(12)=3$	$Z_{2}(25)=4$	$Z_{2}(38)=19$	
$Z_{2}(13)=12$	$Z_{2}(26)=12$	$Z_{2}(39)=12$	

§3. Some Results on Pseudo-Smarandache Function of Second Kind

Following properties are result of direct verification from the above tables.
(1) $Z_{2}(n)=n$ only for $n=1$.
(2) $Z_{2}(p)=p-1, p \neq 2 . Z_{2}(p)=p+1$ for $p=2$.
(3) $Z_{2}(n) \geq \max \left\{Z_{2}(N): N \mid n\right\}$.

Following are some of the important results.

Lemma 3.1 If $S(n)=k$ then $Z_{2}(k)=n$.
Proof The proof follows from the definition of $Z_{2}(n)$.

§4. Open Problem

Problem What is the relation between $Z_{1}(n)$ and $Z_{2}(n)$?

References

[1] Aschbacher Charles, On numbers that are Pseudo-Smarandache and Smarandache perfect, Smarandache Notions Journal, 14(2004), p.p. 40-41.
[2] Gioia, Anthony A., The Theory of Numbers- An Introduction, NY, U.S.A. Dover Publications Inc., 2001.
[3] Ibstedt, Henry, Surfing on the ocean of numbers- A few Smarandache notions and similar topics, U.S.A. Erhus University Press, 1997.
[4] Kashihara, Kenichiro, Comments and topics on Smarandache notions and problems, U.S.A. Erhus University Press, 1996.
[5] A.A.K.Majumdar, A note on Pseudo-Smarandache function, Scientia Magna, Vol. 2, (2006), No. 3, 1-25.

[^0]: ${ }^{1}$ Supported by UGC under the project No. 47-993/09 (WRO)
 ${ }^{2}$ Received April 12, 2011. Accepted August 15, 2011.

