Scientia Magna

Vol. 3 (2007), No. 4, 81-83

On the Pseudo-Smarandache function

Su Gou ${ }^{\dagger}$ and Jianghua Li^{\ddagger}
\dagger Department of Applied Mathematics and Physics
Xi'an Institute of Posts and Telecommunications, Xi'an 710061, Shaanxi, P.R.China
\ddagger Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is using the elementary method to study the properties of the Pseudo-Smarandache function $Z(n)$, and proved the following two conclusions: The equation $Z(n)=Z(n+1)$ has no positive integer solutions; For any given positive integer M, there exists an integer s such that the absolute value of $Z(s)-Z(s+1)$ is greater than M.

Keywords Pseudo-Smarandache function, equation, positive integer solution.

§1. Introduction and results

For any positive integer n, the Pseudo-Smarandache function $Z(n)$ is defined as the smallest positive integer m such that $[1+2+3+\cdots+m]$ is divisible by n. That is,

$$
Z(n)=\min \left\{m: m \in N: n \left\lvert\, \frac{m(m+1)}{2}\right.\right\}
$$

where N denotes the set of all positive integers. For example, the first few values of $Z(n)$ are: $Z(1)=1, Z(2)=3, Z(3)=2, Z(4)=7, Z(5)=4, Z(6)=3, Z(7)=6, Z(8)=15, Z(9)=$ $8, Z(10)=4, Z(11)=10, Z(12)=8, Z(13)=12, Z(14)=7, Z(15)=5, \cdots \cdots$.

In reference [1], Kenichiro Kashihara had studied the elementary properties of $Z(n)$, and proved some interesting conclusions. Some of them as follows:

For any prime $p \geq 3, Z(p)=p-1$;
For any prime $p \geq 3$ and any $k \in N, Z\left(p^{k}\right)=p^{k}-1$;
For any $k \in N, Z\left(2^{k}\right)=2^{k+1}-1$;
If n is not the form 2^{k} for some integer $k>0$, then $Z(n)<n$.
On the other hand, Kenichiro Kashihara proposed some problems related to the PseudoSmarandache function $Z(n)$, two of them as following:
(A) Show that the equation $Z(n)=Z(n+1)$ has no solutions.
(B) Show that for any given positive number r, there exists an integer s such that the absolute value of $Z(s)-Z(s+1)$ is greater than r.

For these two problems, Kenichiro Kashihara commented that I am not able to solve them, but I guess they are true. I checked it for $1 \leq n \leq 60$.

In this paper, we using the elementary method to study these two problems, and solved them completely. That is, we shall prove the following:

Theorem 1. The equation $Z(n)=Z(n+1)$ has no positive integer solutions.
Theorem 2. For any given positive integer M, there exists a positive integer s such that

$$
|Z(s)-Z(s+1)|>M .
$$

§2. Proof of the theorems

In this section, we shall prove our theorems directly. First we prove Theorem 1. If there exists some positive integer n such that the equation $Z(n)=Z(n+1)$. Let $Z(n)=Z(n+1)=m$, then from the definition of $Z(n)$ we can deduce that

$$
n\left|\frac{m(m+1)}{2}, n+1\right| \frac{m(m+1)}{2} .
$$

Since $(n, n+1)=1$, we also have

$$
n(n+1) \left\lvert\, \frac{m(m+1)}{2}\right. \text { and } \frac{n(n+1)}{2} \left\lvert\, \frac{m(m+1)}{2} .\right.
$$

Therefore,

$$
\begin{equation*}
n<m . \tag{1}
\end{equation*}
$$

On the other hand, since one of n and $n+1$ is an odd number, if n is an odd number, then $Z(n)=m \leq n-1<n$; If $n+1$ is an odd number, then $Z(n+1)=m \leq n$. In any cases, we have

$$
\begin{equation*}
m \leq n . \tag{2}
\end{equation*}
$$

Combining (1) and (2) we have $n<m \leq n$, it is not possible. This proves Theorem 1 .
Now we prove Theorem 2. For any positive integer M, we taking positive integer α such that $s=2^{\alpha}>M+1$. This time we have

$$
Z(s)=Z\left(2^{\alpha}\right)=2^{\alpha+1}-1
$$

Since $s+1$ is an odd number, so we have

$$
Z(s+1) \leq s=2^{\alpha} .
$$

Therefore, we have

$$
|Z(s)-Z(s+1)| \geq\left(2^{\alpha+1}-1\right)-2^{\alpha}=2^{\alpha}-1>M+1-1=M
$$

So there exists a positive integer s such that the absolute value of $Z(s)-Z(s+1)$ is greater than M. This completes the proof of Theorem 2.

References

[1] Kashihara, Kenichiro, Comments and Topics on Smarandache Notions and Problems, USA, Erhus University Press, 1996.
[2] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[3] Liu Yanni, On the Smarandache Pseudo Number Sequence, Chinese Quarterly Journal of Mathematics, $\mathbf{1 0}$ (2006), No. 4, 42-59.
[4] Zhang Wenpeng, The elementary number theory, Shaanxi Normal University Press, Xi'an, 2007.
[5] Tom M. Apostol, Introduction to analytical number theory, Spring-Verlag, New York, 1976.

