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Abstract For any positive integer n, the famous pseudo Smarandache function Z(n) is

defined as the smallest positive integer m such that n evenly divides

m∑

k=1

k. That is, Z(n) =

min

{
m : n

∣∣m(m + 1)

2
, m ∈ N

}
, where N denotes the set of all positive integers. The main

purpose of this paper is using the elementary and analytic methods to study the mean value

properties of ln Z(n), and give an interesting asymptotic formula for it.
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§1. Introduction and results

For any positive integer n, the famous pseudo Smarandache function Z(n) is defined as

the smallest positive integer m such that n evenly divides
m∑

k=1

k. That is,

Z(n) = min
{

m : n
∣∣m(m + 1)

2
, m ∈ N

}
,

where N denotes the set of all positive integers. For example, the first few values of Z(n) are:

Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6, Z(8) = 15,

Z(9) = 8, Z(10) = 4, Z(11) = 10, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5,

Z(16) = 31, Z(17) = 16, Z(18) = 8, Z(19) = 18, Z(20) = 15, · · · · · · .

This function was introduced by David Gorski in reference [1], where he studied the elementary
properties of Z(n), and obtained a series interesting results. Some of them are as follows:

If p ≥ 2 be a prime, then Z(p) = p− 1;
If n = 2k, then Z(n) = 2k+1 − 1.
Let p be an odd prime, then Z(2p) = p, if p ≡ 3(mod4); Z(2p) = p− 1, if p ≡ 1(mod4).
For any odd prime p with p | n and n 6= p, Z(n) ≥ p− 1.
The other contents related to the pseudo Smarandache function can also be found in

references [2], [3] and [4]. In this paper, we consider the mean value properties of lnZ(n).
About this problem, it seems that none had studied it yet, at least we have not seen any related
results before. The main purpose of this paper is using the elementary and analytic methods
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study this problem, and give an interesting asymptotic formula for it. That is, we shall prove
the following conclusion:

Theorem. For any real number x > 1, we have the asymptotic formula
∑

n≤x

lnZ(n) = x lnx + O(x).

Whether there exists an asymptotic formula for the mean value

∑

n≤x

Z(n) or
∑

n≤x

1
Z(n)

are two open problems.

§2. Proof of the theorem

In this section, we shall complete the proof of Theorem. First we need the following simple
conclusion:

Lemma. For all real number x > 1, we have the asymptotic formula

∑

p≤x

ln p

p
= ln x + O(1),

where
∑

p≤x

denotes the summation over all prime p with 2 ≤ p ≤ x.

Proof. See Theorem 4.10 of reference [5].
Using this Lemma we can prove our Theorem easily. In fact for any positive integer n > 1,

note that n
∣∣ 2n(2n− 1)

2
, from the definition of Z(n) we know that Z(n) ≤ 2n− 1. So by the

Euler’s summation formula we can get
∑

n≤x

lnZ(n) ≤
∑

n≤x

ln(2n− 1) ≤ x lnx + O(x). (1)

Now let A denotes the set of all square-full numbers n (That is, if p | n, then p2 | n) in the
interval [1, x]. Then we have

∑

n≤x

lnZ(n) =
∑

n≤x
n∈A

lnZ(n) +
∑

n≤x

n/∈A

lnZ(n). (2)

From reference [6] we know that

∑

n≤x
n∈A

1 =
ζ( 3

2 )
ζ(3)

x
1
2 +

ζ( 2
3 )

ζ(2)
x

1
3 + O

(
x

1
6 exp

(
−C log

3
5 x(log log x)−

1
5

))
,

where C > 0 is a constant. By this estimate and note that lnZ(n) ≤ ln(2n), we may get
∑

n≤x
n∈A

lnZ(n) ¿ √
x · lnx. (3)
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If n /∈ A, then n = 1 or there exists at least one prime p with p | n and p2 † n. So from Lemma
we have

∑

n≤x

n/∈A

lnZ(n) =
∑

np≤x

(n, p)=1

lnZ(np) ≥
∑

p≤x

∑

n≤ x
p

(n, p)=1

ln(p− 1)

=
∑

p≤x

[
x

p
− x

p2
+ O(1)

]
· ln(p− 1)

= x ·
∑

p≤x

ln p

p
− x ·

∑

p≤x

ln p

p2
+ O(x)

= x · lnx + O(x). (4)

Combining (1), (2), (3) and (4) we may immediately get the asymptotic formula
∑

n≤x

lnZ(n) = x lnx + O(x).

This completes the proof of Theorem.
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