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Abstract For any positive integer n, Pseudo-Smarandache- Squarefree function Z,(n) is
defined as Zy,(n) = min{m : n|m",m € N}. Smarandache function S(n) is defined as
S(n) = min{m : n|m!;m € N}. The main purpose of this paper is using the elementary
methods to study the mean value properties of the Pseudo-Smarandache-Squarefree function

and Smarandache function, and give two sharper asymptotic formulas for it.
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§1. Introduction and result

For any positive integer n, the famous Smarandache function S(n) is defined as S(n) =
min{m : n|m!l,m € N}, Pseudo-Smarandache-Squarefree function Z,(n) is defined as the

smallest positive integer m such that n | m™. That is,
Zy(n) = min{m : njm"™,m € N}.

For example Z,,(1) =1, Z,(2) =2, Z,,(3) =3, Zw(4) =2, Zy(5) =5, Zw(6) =6, Zw(7) =7,
Zw(8) = 2, Z,,(9) = 3, Z,(10) = 10, ---. About the elementary properties of Z,(n), some
authors had studied it, and obtained some interesting results. For example, Felice Russo [1]
obtained some elementary properties of Z,(n) as follows:

Property 1. For any positive integer k£ > 1 and prime p, we have Z,,(p*) = p.

Property 2. For any positive integer n, we have Z,(n) < n.

Property 3. The function Z,,(n) is multiplicative. That is, it GC'D(m, n) = 1, then Z,,(m-
n) = Zy(m) - Zy(n).

The main purpose of this paper is using the elementary methods to study the mean value
properties of Z,,(S(n)) and S(n)-Z,(n), and give two sharper asymptotic formulas for it. That
is, we shall prove the following conclusions:

Theorem 1. Let k > 2 be any fixed positive integer. Then for any real number x > 2,
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we have the asymptotic formula
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where ¢; (i =2,3---k) are computable constants.
Theorem 2. Let k > 2 be any fixed positive integer. Then for any real number x > 2,

we have the asymptotic formula
3 3
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where ((n) is the Riemann zeta-function, H denotes the product over all primes, ¢; (i =

P
2,3---k) are computable constants.

§2. A simple lemma

To complete the proof of the theorem, we need the following :
Lemma. For any real number x > 2 and s > 2 , we have the asymptotic formula
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Proof. Note that Property 1 and 3, by the Euler product formula (See Theorem 11.7 of

[2]), we have
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From (1) we have
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Specially, if s = 3, then we have the asymptotic formula
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This completes the proof of Lemma.
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§3. Proof of the theorems

In this section, we shall use the elementary methods to complete the proof of the theorems.

First we prove Theorem 1. We separate all integer n in the interval [1, z] into two subsets
A and B as follows:

A:p|nandp > +/n, where pis a prime. B: other positive integer n such that n € [1,z]\ A.
From the definition of the subsets A and B we have

Z Zw(S(n)) = Z Zw(S(n)) + Z Zw(S(n)).

n<lz neA neB

(2)

From Property 1 and the definition of the function S(n) and the subset A we know that if
n € A, then we have

Z Zw(S(n)) = Z Zw(S(pn)) = Z Zw(p) = Z p= Z Z p. (3)
neA pn<z

pn<w pn<w n<yx n<p<E
p>n p>n p>n Ve "

By the Abel’s summation formula (see Theorem 4.2 of [2]) and the Prime Theorem (see
Theorem 3.2 of [3]):

ﬁ(x)_21_§:‘”'x+o(x),

% k+1
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where a; (i =1,2,3--- k) are computable constants and a; = 1, we have
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and (4) we have
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where ¢; (i =2,3---k) are computable constants.

Now we estimate the error terms in set B. Let n = pJ'p3? - - - p% be the factorization of n
into prime powers. If n € B, then we have

S(n) = max (S(p5)) < max (upy) < Vilan < n. (6)
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From (6) and Property 2 we have

3 Zu(S) < D nt < a (7)

neB n<x

Combining (2), (5) and (7) we have

This proves Theorem 1.

Now we prove Theorem 2. From Property 1 and Property 3 we have

Z S(n) - Zy(n) = Z S(pn) - Zw(pn) = Z Z - Zu(n). (8)

neA pn<az n<x n<p<L
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where d; (i =2,3---k) are computable constants.
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Note that the lemma and Z LS(TL) is convergent for all i = 1,2,--- , k. Combining

n
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(8) and (9) we have
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where e; (i = 2,3--- k) are computable constants.
If n € B, then we have

ZS(n)'Zw(n) <<Z\/ﬁlnn'n<<x%1nw. (11)

neB n<x
Combining (10) and (11) we have
3 k 3
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This proves Theorem 2.



Vol. 4 On the Pseudo-Smarandache-Squarefree function and Smarandache function 11

References

[1] Felice Russo, A set of new Smarandache functions, sequences and conjectures in number
theory, Lupton USA, American Research Press, 2000.

[2] Tom M Apostol. Introduction to Analytic Number Theory, New York: Spinger-Verlag,
1976.

[3] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shang-
hai Science and Technology Press, Shanghai, 1988.





