ON THE PSEUDO-SMARANDACHE SQUAREFREE FUNCTION

Maohua Le

Abstract

In this paper we discuss various problems and conjectures concered the pseudo-Smarandache squarefree function.

Keywords: pseudo-Smarandache squarefree function, difference, infinite series, infinite product, diophantine equation

For any positive integer n, the pseudo-Smarandache squarefree function $Z W(n)$ is defined as the least positive integer m such that m^{n} is divisible by n. In this paper we shall discuss various problems and conjectures concered $Z W(n)$.

1. The value of $Z W(n)$

By the definition of $Z W(n)$, we have $Z W(1)=1$. For $n>1$, we give a general result as follows.

Theoren 1.1. If $n>1$, then $Z W(n)=p_{1} p_{2} \cdots p_{k}$, where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct prime divisors of n.

Proof. Let $m=Z W(n)$. Let $p_{1}, p_{2}, \cdots, p_{k}$ be distinct prime divisors of n. Since $n \mid m^{n}$, we get $p_{i} \mid m$ for $i=1,2, \cdots, k$. It implies that $p_{1} p_{2} \cdots$ $p_{k} \mid m$ and

$$
\begin{equation*}
m \geqslant p_{1} p_{2} \cdots p_{k} \tag{1.1}
\end{equation*}
$$

On the other hand, let $r(i)(i=1,2, \cdots, k)$ denote the order of p_{i} $(i=1,2, \cdots, k)$ in n. Then we have

$$
\begin{equation*}
r(i) \leq \frac{\log n}{\log p_{i}}<n, i=1,2, \ldots, k \tag{1.2}
\end{equation*}
$$

Thus, we see from (1.2) that $\left(p_{1} p_{2} \cdots p_{k}\right)^{n}$ is divisible by n. It implies that

$$
\begin{equation*}
m \leqslant p_{1} p_{2} \cdots p_{k} \tag{1.3}
\end{equation*}
$$

The combination of (1.1) and (1.3) yields $m=p_{\mathrm{t}} p_{2} \cdots p_{k}$. The theorem is proved.

2. The difference $|Z W(n+1)-Z W(n)|$

In [3], Russo given the following two conjectures.
Conjecture 2.1. The difference $|Z W(n+1)-Z W(n)|$ is unbounded.
Conjecture 2.2. $Z W(n)$ is not a Lipschitz function.
In this respect, Russo [3] showed that if the Lehmer-Schinzel conjecture concered Fermat numbers is true (see [2]), then Conjectures 2.1 and 2.2 are true. However, the Lehmer-Schinzel conjecture is not resolved as yet. We now completely verify the above-mentioned conjectures as follows.

Theorem 2.1. The difference $|Z W(n+1)-Z W(n)|$ is unbounded.
Proof. Let p be an odd prime. Let $n=2^{p}-1$, and let q be a prime divisor of n. By a well known result of Birkhoff and Vandiver [1], we have $q=2 l p+1$, where l is a positive integer. Therefore, by Theorem 1.1, we get

$$
\begin{equation*}
Z W(n)=Z W\left(2^{p}-1\right) \geqslant q=2 l p+1 \geqslant 2 p+1 . \tag{2.1}
\end{equation*}
$$

On the other hand, apply Theorem 1.1 again, we get

$$
\begin{equation*}
Z W(n+1)=Z W\left(2^{p}\right)=2 . \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2), we obtain

$$
\begin{equation*}
|Z W(n+1)-Z W(n)| \geqslant 2 p-1 . \tag{2.3}
\end{equation*}
$$

Notice that there exist infinitely many odd primes p. Thus, we find from (2.3) that the difference $|Z W(n+1)-Z W(n)|$ is unbounded. The theorem is proved.

As a direct consequence of Theorem 2.1, we obtain the following corollary.

Corollary 2.1. $Z W(n)$ is not a Lipschitz function.
3. The sum and product of the reciprocal of $Z W(n)$

Let \mathbf{R} be the set of all real numbers. In [3], Russo posed the following two problems.

Problem 3.1. Evaluate the infinite product

$$
\begin{equation*}
P=\prod_{n=1}^{\infty} \frac{1}{Z W(n)} . \tag{3.1}
\end{equation*}
$$

Problem 3.2. Study the convergence of the infinite series

$$
\begin{equation*}
S(a)=\sum_{n=1}^{\infty} \frac{1}{(Z W(n))^{a}}, a \in \mathbf{R}, a>0 . \tag{3.2}
\end{equation*}
$$

We now completely solve the above-mentioned problems as follows.

Theorem 3.1. $P=0$.
Proof. By Theorem 1.1, we get $Z W(n)>1$ for any positive integer n with $n>1$. Thus, by (3.1), we obtain $P=0$ immediately. The theorem is proved.

Theorem 3.2. For any positive number $a, S(a)$ is divergence.

Proof. we get from (3.1) that

$$
\begin{equation*}
S(a)=\sum_{n=1}^{\infty} \frac{1}{(Z W(n))^{a}}>\sum_{r=1}^{\infty} \frac{1}{\left(Z W\left(2^{r}\right)\right)^{a}} \tag{3.3}
\end{equation*}
$$

By Theorem 1.1, we have

$$
\begin{equation*}
Z W\left(2^{r}\right)=2 \tag{3.4}
\end{equation*}
$$

for any positive integer r. Substitute (3.4) into (3.3), we get

$$
\begin{equation*}
S(a)=\sum_{r=1}^{\infty} \frac{1}{2^{r}}=\infty \tag{3.5}
\end{equation*}
$$

We find from (3.5) that $S(a)$ is divergence. The theorem is proved.

4. Diophantine equations concerning $Z W(n)$

Let \mathbf{N} be the set of all positive integers. In [3], Russo posed the following problems concerned diophantine equations.

Problem 4.1. Find all solutions n of the equation

$$
\begin{equation*}
Z W(n)=Z W(n+1) Z W(n+2), n \in \mathbf{N} \tag{4.1}
\end{equation*}
$$

Problem 4.2. Solve the equation

$$
\begin{equation*}
Z W(n) . Z W(n+1)=Z W(n+2), n \in \mathbf{N} \tag{4.2}
\end{equation*}
$$

Problem 4.3. Solve the equation

$$
\begin{equation*}
Z W(n) \cdot Z W(n+1)=Z W(n+2) . Z W(n+3), n \in \mathbf{N} \tag{4.3}
\end{equation*}
$$

Problem 4.4. Solve the equation

$$
\begin{equation*}
Z W(m n)=m^{k} Z W(n), m, n, k \in \mathbf{N} \tag{4.4}
\end{equation*}
$$

Problem 4.5. Solve the equation

$$
\begin{equation*}
(Z W(n))^{k}=k . Z W(k n), k, n \in \mathbf{N}, k>1, n>1 \tag{4.5}
\end{equation*}
$$

Problem 4.6. Solve the equation

$$
\begin{equation*}
(Z W(n))^{k}+(Z W(n))^{k-1}+\cdots+Z W(n)=n, k, n \in \mathbf{N}, k>1 \tag{4.6}
\end{equation*}
$$

In this respect, Russo [3] showed that (4.1), (4.2) and (4.3) have
no solutions n with $n \leqslant 1000$, and (4.6) has no solutions (n, k) satisfying $n \leqslant 1000$ and $k \leqslant 5$. We now completely solve the abovementioned problems as follows.

Theorem 4.1. The equation (4.1) has no solutions n.
Proof. Let n be a solution of (4.1). Further let p be a prime divisor of $n+1$. By Theorem 1.1, we get $p \mid Z W(n+1)$. Therefore, by (4.1), we get $p \mid Z W(n)$. It implies that p is also a prime divisor of n. However, since $\operatorname{gcd}(n, n+1)=1$, it is impossible. The theorem is proved.

By the same method as in the proof of Theorem 4.1, we can prove the following theorem without any difficult.

Theorem 4.2. The equation (4.2) has no solutions n.
Theorem 4.3. The equation (4.3) has no solutions n.
Proof. Let n be a solution of (4.3). Further let $p_{1}, p_{2}, \cdots, p_{k}$ and q_{1}, q_{2}, \cdots, q_{t} be distinct prime divisors of $n(n+1)$ and $(n+2)(n+3)$ respectively. We may assume that

$$
\begin{equation*}
p_{1}<p_{2}<\cdots<p_{k}, q_{1}<q_{2}<\cdots<q_{1} . \tag{4.7}
\end{equation*}
$$

Since $\operatorname{gcd}(n, n+1)=\operatorname{gcd}(n+2, n+3)=1$, by Theorem 1.1, we get

$$
\begin{gather*}
Z W(n) . Z W(n+1)=p_{t} p_{2} \cdots p_{k} \\
Z W(n+2) . Z W(n+3)=q_{1} q_{2} \cdots q_{t} \tag{4.8}
\end{gather*}
$$

Substitute (4.8) into (4.3), we obtain

$$
\begin{equation*}
p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{1} \tag{4.9}
\end{equation*}
$$

By (4.7) and (4.9), we get $k=t$ and

$$
\begin{equation*}
p_{i}=q_{i}, i=1,2, \cdots, k . \tag{4.10}
\end{equation*}
$$

Since gcd $(n+1, n+2)=1$, if $2 \mid n$ and $p_{j}(1 \leqslant j \leqslant k)$ is a prime divisor of $n+1$, then from (4.10) we see that p_{j} is an odd prime with $p_{j} \mid n+3$.

Since $\operatorname{gcd}(n+1, n+3)=1$ if $2 \mid n$, it is impossible.
Similarly, if $2 \mid n$ and $q_{j}(i \leqslant j \leqslant k)$ is a prime divisor of $n+2$, then q_{j} is an odd prime with $q_{j} \mid n$. However, since $(n, n+2)=1$ if $2 \mid n$, it is impossible. Thus, (4.3) has no solutions n. The theorem is proved.

Theorem 4.4. The equation (4.4) has infinitely many solutions (m. n, k). Moreover, every solution (m, n, k) of (4.4) can be expressed as

$$
\begin{equation*}
m=p_{1} p_{2} \cdots p_{r}, n=t, k=1 \tag{4.11}
\end{equation*}
$$

where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes, t is a positive integer with gcd $(m, t)=1$.

Proof. Let (m, n, k) be a solution of (4.4). Further let $d=\operatorname{gcd}(m$, n). By Theorem 1.1, we get from (4.4) that

$$
\begin{equation*}
Z W(m n)=Z W\left(\frac{m}{d} \cdot n\right)=Z W\left(\frac{m}{d}\right) \cdot Z W(n)=m^{k} Z W(n) \tag{4.12}
\end{equation*}
$$

Since $Z W(n) \neq 0$, we obtain from (4.12) that

$$
\begin{equation*}
Z W\left(\frac{m}{d}\right)=m^{k} \tag{4.13}
\end{equation*}
$$

Furthermore, since $m \geqslant Z W(m)$, we see from (4.13) that $k=d=1$ and $m=p_{1} p_{2} \cdots p_{r}$, where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes. Thus, the solution (m, n, k) can be expressed as (4.11). The theorem is proved.

Theorem 4.5. The equation (4.5) has infinitely many solutions (n, k). Moreover, every solution (n, k) of (4.5) can be expressed as

$$
\begin{equation*}
n=2^{r}, k=2, r \in \mathbf{N} . \tag{4.14}
\end{equation*}
$$

Proof. Let (n, k) be a solution of (4.5). Further let $d=\operatorname{gcd}(n, k)$.
By Theorem 1.1, we get from (4.5) that

$$
\begin{equation*}
Z W(n k)=k Z W\left(n \cdot \frac{k}{d}\right)=k Z W(n) \cdot Z W\left(\frac{k}{d}\right)=(Z W(n))^{k} \tag{4.15}
\end{equation*}
$$

Since $Z W(n) \neq 0$ and $k>1$, by (4.15), we obtain

$$
\begin{equation*}
k Z W\left(\frac{k}{d}\right)=(Z W(n))^{k-1} \tag{4.16}
\end{equation*}
$$

Since $n>1$, we find from (4.16) that k and n have the same prime divisors.
Let $p_{1}, p_{2}, \cdots, p_{t}$ be distinct prime divisors of n. Then we have $Z W(n)=p_{1} p_{2} \cdots p_{r}$. Since $Z W(k / d) \leqslant k$, we get from (4.16) that

$$
\begin{equation*}
k^{2} \geq k Z W\left(\frac{k}{d}\right)=(Z W(n))^{k-1}=\left(p_{1} p_{1} \ldots p_{t}\right)^{k-1} . \tag{4.17}
\end{equation*}
$$

Since $k>1$, by (4.17), we obtain $t=1$ and either

$$
\begin{equation*}
k=3, p_{1}=3, \tag{4.18}
\end{equation*}
$$

or

$$
\begin{equation*}
k=2, p_{1}=2 . \tag{4.19}
\end{equation*}
$$

Recall that k and n have the same prime divisors. If (4.18) holds, then $Z W(k / d)=Z W(1)=1$ and $(4,16)$ is impossible. If (4.19) holds, then the solution (n, k) can be expressed as (4.14). Thus, the Theorem is proved.
Theorem 4.6. The equation (4.6) has no solutions (n, k).
Proof. Let (n, k) be a solution of (4.6). Further let $m=Z W(n)$, and let p_{1}, p_{2}, \cdots, p_{t} be distinct prime divisors of n. By Theorem 1.1, we have

$$
\begin{equation*}
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{t}^{a_{1}}, Z W(n)=p_{1} p_{2} \ldots p_{t} \tag{4.20}
\end{equation*}
$$

where $a_{1}, a_{2}, \cdots, a_{t}$ are positive integers. Substitute (4.20) into (4.6), we get

$$
\begin{equation*}
1+p_{1} p_{2} \ldots p_{t}+\ldots+\left(p_{1} p_{2} \ldots p_{t}\right)^{k-1}=p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \ldots p_{1}^{a_{1}-1} \tag{4.21}
\end{equation*}
$$

Since $\operatorname{gcd}\left(1, p_{1} p_{2} \cdots p_{t}\right)=1$, we find from (4.21) that $a_{1}=a_{2}=\cdots=a_{1}=1$. It
implies that $k=1$, a contradiction. Thus, (4.6) has no solutions (n, k). The theorem is proved.

References

[1] Birkhoff, G. D. and Vandiver, H. S., On the integral divisor of a^{n} b^{n}, Ann. of Math. (2), 1904, 5:173-180.
[2] Ribenboim, P., The book of prime numbers records, New York, Springer-Verleg, 1989.
[3] Russo, F., A set of new Smarandache functions, sequences and conjectures in number theory, Lupton, American Reserch Press, 2000.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P. R. CHINA

