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For any positive integer n, the pseudo-Smarandache squarefree 

function ZW(n) is defined as the least positive integer m such that mn 

is divisible by n. In this paper we shall discuss various problems and 

conjectures concered ZW(n). 

1. The value of ZW(n) 

By the definition of ZW(n), we have ZW(I)=l. For n> 1, we give 

a general result as follows. 

Theoren 1.1. If n> 1, then ZW(n)=PIP2"'Pk> where PI' P2' "', Pk 

are distinct prime divisors of n. 

Proof. Let m=ZW(n). Let PI' P2' "', Pk be distinct prime divisors 

of n. Since nlmn, we get Pilm for i=l, 2, "', k. It implies that PIP2'" 

Pklm and 

(1.1) 

On the other hand, let r(i) (i=1, 2, "', k) denote the order of Pi 

(i=1,2, "', k) in n. Then we have 
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(1.2) . < logn ._ r(z)_ <n,z-I,2, ... ,k. 
logPi 

Thus, we see from (1.2) that (PJP2···Pkr is divisible by n. It implies 

that 

(1.3) m~PJP2···Pk. 

The combination of (1. I) and (1.3) yields m= PJP2···Pk. The theorem 

is proved. 

2. The difference IZW(n+l)-ZW(n)1 

In [3], Russo given the following two conjectures. 

Conjecture 2.1. The difference IZW(n+I)-ZW(n)1 is unbounded. 

Conjecture 2.2. ZW(n) is not a Lipschitz function. 

In this respect, Russo [3] showed that if the Lehmer-Schinzel 

conjecture concered Fennat numbers is true (see [2]), then Conjectures 

2.1 and 2.2 are true. However, the Lehmer-Schinzel conjecture is not 

resolved as yet. We now completely verify the above-mentioned 

conjectures as follows. 

Theorem 2.1. The difference IZW(n+ 1 )-ZW(n)1 is unbounded. 

Proof. Let P be an odd prime. Let n=2P -I, and let q be a prime 

divisor of n. By a well known result of Birkhoff and Vandiver [I], we 

have q=21p+ 1, where I is a positive integer. Therefore, by Theorem 1.1, 

we get 

(2.1) ZW(n)=ZW(2P-l)~q=21P+1~2P+l. 

On the other hand, apply Theorem 1.1 again, we get 

(2.2) ZW(n+ 1 )=ZW(2P)=2. 
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By (2.1) and (2.2), we obtain 

(2.3) IZW(n+l)-ZW(n)I~2p-1. 

Notice that there exist infinitely many odd primes p. Thus, we find 

from (2.3) that the difference IZW(n+ 1 )-ZW(I1)1 is unbounded. The 

theorem is proved. 

As a direct consequence of Theorem 2.1, we obtain the following 

corollary. 

Corollary 2.1. ZW(n) is not a Lipschitz function. 

3. The sum and product of the reciprocal of ZW(n) 

Let R be the set of all real numbers. In [3], Russo posed the 

following two problems. 

Problem 3.1. Evaluate the infinite product 

(3.1) 
<Xl 

p= n ---
11=1 ZW(n) 

Problem 3.2. Study the convergence of the infinite series 

(3.2) 
<Xl 1 

S (a) = I ( ())' a E R, a >0. 
n=1 ZW n a 

We now completely solve the above-mentioned problems as 

follows. 

Theorem 3.1. p=o. 

Proof. By Theorem 1.1, we get ZW(n» 1 for any positive integer 

n with n> 1. Thus, by (3.1), we obtain P=O immediately. The theorem 

is proved. 

Theorem 3.2. For any positive number a, Sea) is divergence. 
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Proof. we get from (3.1) that 

(3.3) Sea) = I 1 > ~ 1 . 
n=l (ZW(n)Y r=1 (ZW(2 r )Y 

By Theorem 1.1, we have 

(3.4) ZW(2r)=2 , 

for any positive integer r. Substitute (3.4) into (3.3), we get 

(3.5) 
co 1 

S(a)=r-=oo. 
r=12r 

We find from (3.5) that Sea) is divergence. The theorem is proved. 

4. Diophantine equations concerning ZW(n) 

Let N be the set of all positive integers. In [3], Russo posed the 

following problems concerned diophantine equations. 

Problem 4.1. Find all solutions n of the equation 

(4.1) ZW(n)=ZW(n+l)ZW(n+2), nEN. 

Problem 4.2. Solve the equation 

(4.2) ZW(n). ZW(n+l)=ZW(n+2), nEN. 

Problem 4.3. Solve the equation 

(4.3) ZW(n). ZW(n+1)=ZW(n+2). ZW(n+3), nEN. 

Problem 4.4. Solve the equation 

(4.4) ZW(mn)=mkZW(n), m, n, kEN. 

Problem 4.5. Solve the equation 

(4.5) (ZW(n)t=k. ZW(kn), k, n E N, k> 1, n> 1. 

Problem 4.6. Solve the equation 

(4.6) (ZW(n)/+(ZW(n)tl+···+ZW(n)=n, k, n EN, k> 1. 

In this respect, Russo [3] showed that (4.1), (4.2) and (4.3) have 
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no solutions n with n ~ 1000, and (4.6) has no solutions (n, k) 

satisfying n~ 1000 and k~5. We now completely solve the above­

mentioned problems as follows. 

Theorem 4.1. The equation (4.1) has no solutions n. 

Proof. Let n be a solution of (4.1). Further let p be a prime 

divisor of n+ 1. By Theorem 1.1, we get pIZW(n+ 1). Therefore, by 

(4.1), we getpIZW(n). It implies thatp is also a prime divisor of n. 

However, since gcd (n, n+l)=I, it is impossible. The theorem is 

proved. 

By the same method as in the proof of Theorem 4.1, we can prove 

the following theorem without any difficult. 

Theorem 4.2. The equation (4.2) has no solutions n. 

Theorem 4.3. The equation (4.3) has no solutions n. 

Proof. Let n be a solution of(4.3). Further let PI,P2, .•. ,Pk and ql' 

q2, "', qt be distinct prime divisors of n(n+1) and (n+2)(n+3) 

respectively. We may assume that 

(4.7) PI<P2< ... <Pt, ql <q2< ···<qt. 

Since gcd (n, n+1)=gcd (n+2, n+3)=1, by Theorem 1.1, we get 

ZW(n). ZW(n+l)=P1P2"'Pk 

(4.8) ZW(n+2). ZW(n+3)=qIQ2···q, 

Substitute (4.8) into (4.3), we obtain 

(4.9) PIP2···Pk=QIQ2···Q,. 

By (4.7) and (4.9), we get k=t and 

(4.10) Pi=Qi' i=I, 2, ···,k. 

Since gcd (n+l, n+2)=I, if21n andpj (1 0~k) is a prime divisor 

of n+l, then from (4.10) we see that Pj is an odd prime with p)n+3. 
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Since gcd (n+ 1, n+3)=1 if21 n, it is impossible. 

Similarly, if 2 I nand qj (i~~k) is a prime divisor of n+2, then 

qj is an odd prime with q)n. However, since (n, n+2)=1 if 2 I n, it is 

impossible. Thus, (4.3) has no solutions n. The theorem is proved. 

Theorem 4.4. The equation (4.4) has infinitely many solutions (m. 

n, k). Moreover, every solution (m, n, k) of (4.4) can be expressed as 

(4.11) m=PIP2···Pn n=t, k=1, 

where PI' P2' •. ', Pr are distinct primes, t is a positive integer with gcd 

(m, t)=1. 

Proof. Let (m, n, k) be a solution of (4.4). Further let d=gcd (m, 

n). By Theorem 1.1, we get from (4.4) that 

(4.12) ZW(mn) = zw(;.n)= Zw(; }ZW(n) = m·ZW(n). 

Since ZW(n):;t:O, we obtain from (4.12) that 

( 4.13) ZW(; )=m" 

Furthermore, since m~ZW(m), we see from (4.13) that k=d=1 and 

m=pIP2···Pn where PI' P2' ... , Pr are distinct primes. Thus, the solution 

(m, n, k) can be expressed as (4.11). The theorem is proved. 

Theorem 4.5. The equation (4.5) has infinitely many solutions (n, 

k). Moreover, every solution (n, k) of(4.5) can be expressed as 

(4.14) n=2r
, k=2, rEN. 

Proof. Let (n, k) be a solution of (4.5). Further let d=gcd (n, k). 

By Theorem 1.1, we get from (4.5) that 

(4.15) ZW(nk) = kZW( n. ~) = kZW(n).zw(~) = (ZW(n»)'. 
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Since ZW(n):;i:O and k> 1, by (4.15), we obtain 

(4.16) kZW(=) = (ZW(n»H. 

Since n> 1, we find from (4.16) that k and n have the same prime 

divisors. 

Let PI' Pb "', PI be distinct prime divisors of n. Then we have 

ZW(n)=ptP2'''PI' Since ZW(k1d)~k, we get from (4.16) that 

(4.17) e ~kZW(=)=(zw(n»'-' =(p,p, ... p,)'-'. 

Since k> 1, by (4.17), we obtain t=1 and either 

(4.18) k=3, PI=3, 

or 

( 4.19) 

Recall that k and n have the same prime divisors. If (4. 18) holds, then 

ZW(k/d)=ZW(I )=1 and (4,16) is impossible. If (4. 19) holds, then the 

solution (n, k) can be expressed as (4.14). Thus, the Theorem IS 

proved. 

Theorem 4.6. The equation (4.6) has no solutions (n, k). 

Proof. Let (n, k) be a solution of (4.6). Further let m=ZW(n), and let PI' 

P2' "', P, be distinct prime divisors of n. By Theorem 1.1, we have 

(4.20) n = p~'p;2 ... p;' ,ZW(n) = PIP2 ."P" 

where ai' a2, "', al are positive integers. Substitute (4.20) into (4.6), 

we get 

(4 21) I ( )k-I a -I a2-1 a-I . + PIP2 .. ·Pr + ... + PIP2· .. Pr = PI' P2 ···P,' . 

Since gcd (1, PtP2"'pt)=I, we fmd from (4.21) that a l=a2=···=at=1. It 
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implies that k= 1, a contradiction. Thus, (4.6) has no solutions (n, k). 

The theorem is proved. 
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