Q-Smarandache Fuzzy Implicative Ideal of QSmarandache BH-Algebra

To cite this article: Husein Hadi Abbass and Qasim Mohsin Luhaib 2020 IOP Conf. Ser.: Mater. Sci. Eng. 928 042029

View the article online for updates and enhancements.
Q-Smarandache Fuzzy Implicative Ideal of Q-Smarandache BH-Algebra

Husein Hadi Abbass¹, Qasim Mohsin Luhaib²

¹Mathematics Department, Faculty of Education for Girls, University of Kufa Najaf, IRAQ.
²Thi-Qar General Directorate of Education, Ministry of Education, IRAQ
¹ qasimmohsinluhaib@gmail.com,
² hussienh.abbas@uokufa.edu.iq

Abstract

In this paper, The notions of Q-Smarandache fuzzy implicative ideal and Q-Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-Algebra introduced, examples are given, and related properties investigated the relationships among these notions and other types of Q-Smarandache fuzzy ideal of a Q-Smarandache BH-Algebra are Studies.

Keywords: BCK-algebra, BH-algebra, BH-algebra, Q-Smarandache a filter of Smarandache BH-algebra.

1 Introduction

licative, medial) BH-algebra and sub-implicative ideal of a BH-algebra[7]. In 2015, H.H.Abbass and H.K.Gatea introduced the notion Q-Smarandache implicative ideal of a Q-Smarandache BH-Algebra[8]. In this paper we introduce the notion of Q-Smarandache fuzzy implicative ideal and Q-Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-Algebra. Note in this paper, X is Q-Smarandache BH-Algebra.

2. Preliminaries

In this section, we give some basic concepts about a BCI-algebra, a BCK-algebra, a BCH-algebra, a BH-algebra, a Q-Smarandache BH-algebra, and a Q-Smarandache ideal of a BH-algebra.

Definition 2.1. [9]. A BCI-algebra is an algebra \((X, \ast, 0)\), where \(X\) is a nonempty set, \(\ast\) is a binary operation and 0 is a constant, satisfying the following axioms: for all \(x, y, z \in X\):

i. \((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0,

ii. \((x \ast (x \ast y)) \ast y = 0,

iii. \(x \ast x = 0,

iv. \(x \ast y = 0\) and \(y \ast x = 0\) imply \(x = y\).

Definition 2.2. [3]. BCK-algebra is a BCI-algebra satisfying the axiom:

\(0 \ast x = 0\) for all \(x \in X\).

Definition 2.3. [10]. A BH-algebra is a nonempty set \(X\) with a constant 0 and a binary operation \(\ast\) satisfying the following conditions:

i. \(x \ast x = 0, \forall x \in X\).

ii. \(x \ast y = 0\) and \(y \ast x = 0\) imply \(x = y, \forall x, y \in X\).

iii. \(x \ast 0 = x, \forall x \in X\).

Remark 2.4. [10].

i. Every BCK-algebra is a BCI-algebra.

ii. Every BCK-algebra is a BCH/ BH-algebra.

Remark 2.5. [11] Let \(X\) and \(Y\) be BH-algebras. A mapping \(f : X \to Y\) is called a homomorphism if \(f(x \ast y) = f(x) \ast f(y)\) \(\forall x, y \in X\). A homomorphism \(f\) is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). For any
homomorphism \(f : X \rightarrow Y \) the set \(\{ x \in X : f(x)=0 \} \) called the kernel of \(f \), denoted by \(\text{Ker}(f) \), and the set \(\{ f(x) : x \in X \} \) is called the image of \(f \), denoted by \(\text{Im}(f) \). Notice that \(f(0) = 0 \).

Definition 2.6. [12] BCK-algebra \((X, *, 0)\) is said to be Bounded BCK-algebra satisfying the identity: \(x *(y *x) = x \forall x, y \in X \).

Definition 2.7. [13] A BH-algebra \(X \) is called BH*-algebra if \((x*y)*x = 0, \forall x, y \in X \).

Definition 2.8. [6] A Smarandache BH-algebra is defined to be a BH-algebra \(X \) in which there exists a proper subset \(Q \) of \(X \) such that

i. \(0 \in Q \) and \(|Q| \geq 2 \).

ii. \(Q \) is a BCK-algebra under the operation of \(X \).

Definition 2.9. [8] A Q-Smaradache BH-algebra is said to be a Q-Smaradache implicative BH-algebra if it satisfies the condition, \((x* (x * y)) * (y * x) = y * (y * x) \) \(\forall x, y \in Q \).

Definition 2.10. [8] A Q-Smarandache BH-algebra \(X \) is called a Q-Smarandache medial BH-algebra if \(x * (x*y) = y, \forall x, y \in Q \).

Definition 2.11. [6] A nonempty subset \(I \) of \(X \) is called a Q-Smarandache ideal of \(X \), denoted by a Q-S.I of \(X \) if it satisfies:

\[(J_1) \ 0 \in I \]
\[(J_2) \ \forall y \in I \text{ and } x*y \in I \Rightarrow x \in I, \ \forall x \in Q. \]

Definition 2.12. [8] A Q-Smarandache ideal \(I \) of \(X \) is called a Q-Smarandache implicative ideal of \(X \), denoted by a Q-S.I.I of \(X \) if:

\[(x*(y*x))*z \in I \text{ and } z \in I \implies x \in I, \ \forall x, y \in Q. \]

Definition 2.13. [8] A nonempty subset \(I \) of \(X \) is called a Q-Smarandache P-ideal of \(X \) if it satisfies \((J_3) \) and :

\[(J_3) \ (x*z) *(y*z) \in I \text{ and } y \in I \implies x \in I, \ \forall x, z \in Q. \]

Definition 2.14. [2] A fuzzy set \(A \) in a BH-algebra \(X \) is said to be a fuzzy subalgebra of \(X \) if it satisfies: \(A(x*y) \geq \min \{ A(x) , A(y) \} \), \(\forall x, y \in X \).

Definition 2.15. [14] A fuzzy subset \(A \) of a BH-algebra \(X \) is said to be a fuzzy ideal if and only if:

\[(I_1) \ A(0) \geq A(x), \ \forall x \in X. \]

\[(I_2) \ A(x) \geq \min \{ A(x*y), A(y) \}, \ \forall x, y \in X. \]

Definition 2.16. [15] A fuzzy subset \(A \) of a BH-algebra \(X \) is called a fuzzy implicative ideal of \(X \), denoted by a F.I.I if it satisfies\((I_1)\)and
A(x) ≥ \min\{A((x * (y * x)) * z), A(z)\}, \forall x, y, z \in X.

Definition 2.17. [16]. A fuzzy subset \(A\) of a BH-algebra \(X\) is called a fuzzy sub implicative ideal of \(X\), denoted by a F.S.I.I if it satisfies (I1) and

\[
(I_4) \ A(y * (y * x)) \geq \min \{A(((x * (x * y)) * (y * x) * z), A(z)), \forall x, y, z \in X.
\]

Definition 2.18. [17]. Let \(A\) be a fuzzy set in, \(\forall \alpha \in [0, 1]\), the set \(A_\alpha = \{ x \in X, A(x) \geq \alpha \}\) is called a level subset of \(A\).

Note that, \(A_\alpha\) is a subset of \(X\) in the ordinary sense.

Definition 2.19. [17].

Let \(X\) and \(Y\) be any two sets, \(A\) be any fuzzy set in \(X\) and \(f: X \to Y\) be any function. The set \(f^{-1}(y) = \{x \in X | f(x) = y\}, \forall y \in Y\). The fuzzy set \(B\) in \(Y\) defined by \(B(y) = \sup\{A(x) | x \in f^{-1}(y)\}\); \(\sup\) if \(f^{-1}(y) \neq \emptyset\), \(\forall y \in Y\), is called the image of \(A\) under \(f\) and is denoted by \(f(A)\).

Definition 2.18. [12].

Let \(X\) and \(Y\) be any two sets \(f: X \to Y\) be any function and \(B\) be any fuzzy set in \(f(A)\). The fuzzy set \(A\) in \(X\) defined by: \(A(x) = B(f(x)) \ \forall x \in X\) is called the primage of \(B\) under \(f\) and is denoted by \(f^{-1}(B)\).

Definition 2.21. [6]. A fuzzy subset \(A\) of \(X\) is said to be a Q-Smarandache fuzzy ideal of \(X\), denoted by a Q-S.F.I of \(X\):

\[
(F_1) \ A(0) \geq A(x), \forall x \in X
\]

\[
(F_2) \ A(x) \geq \min \{A((x * y)) A(y)\}, \forall x \in Q, y \in X
\]

3. Main results

In this section, we introduce the concepts of a Q-Smarandache fuzzy implicative ideal and Q-Smarandache fuzzy sub implicative ideal of a Q-Smarandache BH-algebra, also we study some properties of it with examples.

Definition 3.1. A fuzzy subset \(A\) of \(X\) is called a Q-Smarandache fuzzy implicative ideal of \(X\), denoted by a Q-S.F.I.I of \(X\) if it satisfies \((F_1)\) and,

\[
(F_3) \ A(x) \geq \min\{A(((x * (y * x)) * z)), A(z)\}, \text{ for all } x, y \in Q, z \in X.
\]

Example 3.2.

Consider \(X = \{0, 1, 2\}\) with binary operation \(\ast\) defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
where $Q = \{0, 2\}$ is a BCK-algebra. The fuzzy subset A defined by $A(0) = 0.7$, $A(1) = 0.5$ and $A(2) = 0.2$ by calculation we knew that A is Q-S.F.I.I.

Proposition 3.3. Every Q-S.F.I.I is Q-S.F.I. of X.

Proof. Let A be a Q-S.F.I.I, To prove that A is Q-S.F.I. by Definition (3.1) the condition (F_1) is satisfied. Now let $x, y \in Q$ and $z \in X$, we have $A(x) \geq \min\{A((x \ast (0)) \ast y), A(y)\}, (\text{since } A \text{ is a Q-S.F.I.I})$ it follows that $A(x) \geq \min\{A((x \ast (0)) \ast y), A(y)\}, (\text{since } x \ast x = 0, \forall x, y \in Q)$ implies that $A(x) \geq \min\{A((x \ast y), A(y)\}$ (since $x \ast 0 = x, \forall x \in Q$). Hence A is Q-S.F.I of X.

Remark 3.4. A Q-S.I of X may not be a Q-S.F.I.I of X as in the following example.

Example 3.5. Consider $X = \{0, 1, 2, 3\}$ with binary operation \ast defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

where $Q = \{0, 1\}$ is a BCK-algebra. The fuzzy subset A defined by $A(0) = A(2) = 0.5$ and $A(1) = A(3) = 0.2$ is Q-S.F.I of X but it is not a Q-S.F.I.I of X. Since if $x = 1, y = 0, z = 2$, then $A(1) < \min\{A((1 \ast (0 \ast 1)) \ast 2), A(2)\}$.

Theorem 3.6. Let A be a Q-S.F.I of X. Then A is a Q-S.F.I.I of X if and only if the level subset A_{α} is a Q-S.I.I of $X, \forall \alpha \in [0, A(0)]$, such that $A(0) = Sup_{x \in X} A(x)$.

Proof. Let A be a Q-S.F.I of X. To prove A_{α} is a Q-S.I.I of X. It is clear that $A(0) \geq \alpha$. So $0 \in A_{\alpha}$. Hence A_{α} satisfies I1. Now let $x, y \in Q, z \in X$ such that $((x \ast (y \ast x)) \ast z) \in A_{\alpha}$ and $z \in A_{\alpha}$ it follows that $A((x \ast (y \ast x)) \ast z) \geq \alpha$ and $A(z) \geq \alpha$ Thus $\min\{A((x \ast (y \ast x)) \ast z), A(z)\} \geq \alpha$. But $A(x) \geq \min\{A((x \ast (y \ast x)) \ast z), A(z)\}$ [Since A is a Q-S.F.I.I of X. By definition 3.1(F3)] So $A(x) \geq \alpha \Rightarrow x \in A_{\alpha}$ Therefore, A_{α} is a Q-S.I.I of X.

Conversely, Let A_{α} be a Q-S.I.I of $X, \forall \alpha \in [0, A(0)]$ and $\alpha = Sup_{x \in X} A(x)$. To prove that A is a Q-S.F.I.I of X. $0 \in A_{\alpha}$. [Since A_{α} is a Q-S.I.I. of X].
imply \(A(0) \geq \alpha \) we get \(A(0) \geq A(x) \). Let \(x, y \in Q, z \in X \) such that \(\min\{A((x \ast (y \ast x)) \ast z), A(z)\} = \alpha \) then \(A((x \ast (y \ast x)) \ast z) \geq \alpha \) and \(A(z) \geq \alpha \).

It follows that \(((x \ast (y \ast x)) \ast z) \in A_{\alpha} \) and \(z \in A_{\alpha} \). Since \(A_{\alpha} \) be an Q-S.I.I of \(X \) imply \(A(x) \geq \alpha \) we get \(A(x) \geq \min\{A(((x \ast (y \ast x)) \ast z), A(z)\} \).

Therefore, \(A \) is a Q-S.F.I.I of \(X \).

Corollary 3.6.1. A fuzzy subset \(A \) is a Q-S.F.I.I of \(X \) if and only if the set \(X_A \) is an Q-S.I.I of \(X \), where \(X_A = \{ x \in X \mid A(x) = A(0) \} \)

Proof. Let \(A \) be a Q-S.F.I.I of \(X \). To prove \(X_A \) is a Q-S.I.I of \(X \).

i. If \(x = 0 \) then \(A(0) = A(0) \Rightarrow 0 \in X_A \)

ii. Let \(x, y \in Q, z \in X \) such that \((x \ast (y \ast x)) \ast z \in X_A \) and \(z \in X_A \).

\(A((x \ast (y \ast x)) \ast z) = A(0) \) and \(A(z) = A(0) \). we have \(A(x) \geq \min\{A((x \ast (y \ast x)) \ast z), A(z)\} \) [Since \(A \) is a Q-S.F.I.I of \(X \)] it follows that \(A(x) \geq A(0) \) Hence \(A(x) = A(0) \) [Since \(A \) is a Q-S.F.I.I of \(X, A(x) \geq A(0) \)] we get \(x \in X_A \). Therefore, \(X_A \) is a Q-S.I.I of \(X \).

Conversely,

Let \(X_A \) be a Q-S.I.I of \(X \). To prove \(A \) is a Q-S.F.I.I of \(X \).

Since \(X_A = A(0) \)

Therefore, \(A \) is a Q-S.F.I.I of \(X \) [By Theorem 3.6].

Proposition 3.7. Let \(A \) be a fuzzy subset of \(X \) defined by

\[
A(x) = \begin{cases}
\alpha_1 & \text{if } x \in X_A \\
\alpha_2 & \text{otherwise,}
\end{cases}
\]

where \(\alpha_1, \alpha_2 \in [0, 1] \) such that \(\alpha_1 > \alpha_2 \).

Then \(A \) is a Q-S.F.I.I of \(X \) if and only if \(X_A \) is an Q-S.I.I of \(X \).

Proof. Let \(A \) be a Q-S.F.I.I of \(X \). To prove \(X_A \) is an Q-S.I.I of \(X \).

i. \(A(0) = \alpha_1 \Rightarrow 0 \in X_A \) [Since \(A(0) \geq A(x); \forall x \in X \). By definition 3.1(F1)].

ii. Let \(x, y \in Q, z \in X_A \) such that \((x \ast (y \ast x)) \ast z \in X_A \) and \(z \in X_A \).

we obtain \(A((x \ast (y \ast x)) \ast z) = A(0) = \alpha_1 \) and \(A(z) = A(0) = \alpha_1 \) it follows that \(A(x) \geq \min\{A((x \ast (y \ast x)) \ast z), A(z)\} = \alpha_1 \) [Since \(A \) is a Q-S.F.I.I of \(X \),
by definition $3.1(F_1)$, Thus $A(x) = \alpha_1 \Rightarrow x \in X_A$. Hence X_A is a Q-S.I.I of X.

Conversely, Let X_A be an Q-S.I.I of X. To prove A is a Q-S.F.I.I of X.

i. Since $0 \in X_A$, then $A(0) = \alpha_1 \Rightarrow A(0) = \alpha_1 \geq A(x)$, we get $A(0) \geq A(x), \forall x \in X$.

ii. Let $x, y \in Q$, $z \in X$. Then we have four cases:

Case 1: If $(x \ast (y \ast x)) \ast z \in X_A$ and $z \in X_A$, it follows that $x \in X_A$[Since X_A is an Q-S.I.I of X], we get $A((x \ast (y \ast x)) \ast z) = A(z) = A(x) = \alpha_1$. Hence $A(x) \geq \min\{A ((x \ast (y \ast x)) \ast z), A(z)\}$.

Case 2: If $(x \ast (y \ast x)) \ast z \in X_A$ and $z \notin X_A$ it follows that $A((x \ast (y \ast x)) \ast z) = \alpha_1$ and $A(z) = \alpha_2$. we get $\min\{A ((x \ast (y \ast x)) \ast z), A(z)\} = \alpha_2$. Hence $A(x) \geq \min\{A ((x \ast (y \ast x)) \ast z), A(z)\}$.

Case 3: If $(x \ast (y \ast x)) \ast z \notin X_A$ and $z \in X_A$ it follows that $A((x \ast (y \ast x)) \ast z) = \alpha_2$ and $A(z) = \alpha_1$. we get $\min\{A ((x \ast (y \ast x)) \ast z), A(z)\} = \alpha_2$. Hence $A(x) \geq \min\{A ((x \ast (y \ast x)) \ast z), A(z)\}$. Therefore, A is a Q-S.F.I.I of X.

Remark 3.8. Let A be a fuzzy subset of X and $w \in X$. The set $\{x \in X|A(w) \leq A(x)\}$ is denoted by $\uparrow A(w)$.

Proposition 3.9. Let A be a Q-S.F.I.I of X and $w \in X$. If A satisfies the condition

$\forall x, y \in Q \ A(x) \geq A(x \ast (y \ast x))$ (b2). Then $\uparrow A(w)$ is a Q-S.I.I of X.

Proof. Let A be a Q-S.F.I of X. Then $A(0) \geq A(x), \forall x \in X$ [By Definition 2.21(F_1)].

It follows that $A(0) \geq A(w)$ [Since $w \in X$ we get $0 \in \uparrow A(w)$

Now, Let $x, y \in Q$, $z \in X$ such that $((x \ast (y \ast x)) \ast z) \in \uparrow A(w)$ and $z \in \uparrow A(w)$

Thus $A(w) \leq A((x \ast (y \ast x)) \ast z)$ and $A(w) \leq A(z)$ implies that

$A(w) \leq \min \{A((x \ast (y \ast x)) \ast z), A(z)\} \leq A(x \ast (y \ast x))$ [Since A is a Q-S.F.I]

of X. But $A(x \ast (y \ast x)) \leq A(x)$. [By (b2)] we get $A(w) \leq A(x)$. Hence $x \in \uparrow A(w)$ Therefore, $A(w)$ is a Q-S.I.I of X.

Proposition 3.10. Let $w \in X$. If A is a Q-S.F.I.I of X, then $\uparrow A(w)$ is a Q-S.I.I of X.
Proof. Let A be a Q-S.F.I of X. Then $A(0) \geq A(x)$, $\forall x \in X$ it follows that $A(0) \geq A(w)$ [Since $w \in X$.] Hence $0 \in \uparrow A(w)$. Let $x, y \in Q$, $z \in X$ such that $(x*(x*y))^*z$

$z \in \uparrow A(w)$ and $z \in \uparrow A(w)$ Then $A(w) \leq A((x*(y*x))^*z)$ and $A(w) \leq A(z)$ it follows $A(w) \leq \min \{ A((x*(y*x))^*z) , A(z) \}$ But $\min A((x*(y*x))^*z) , A(z) \leq A(x)$ [By Definition 2.21(F2)] we get $A(w) \leq A(x)$. Hence $x \in \uparrow A(w)$. Therefore, $\uparrow A(w)$ is a Q-S.F.I of X.

Proposition 3.11.

Let $\{ A_i / i \in I \}$ be a family of Q-S.F.I. of X. Then $\bigcap_{i \in I} A_i$ is a Q-S.F.I. of X.

Let $\{ A_i / i \in I \}$ be a family of Q-S.F.I. of X.

i. Let $x \in X$. Then

$$\bigcap_{i \in I} A_i(0) = \inf \{ A_i(0) \mid i \in I \} \geq \inf \{ A_i(x) \mid i \in I \} = \bigcap_{i \in I} A_i(x)$$

(ii). Let $x, y \in Q$, $z \in X$. Then, we have

$$\bigcap_{i \in I} A_i(x) = \inf \{ A_i(x) \mid i \in I \} \geq \inf \{ \min \{ A_i((x*(y*x))^*z), A_i(z) \} \}$$

$$= \inf \{ \min \{ A_i((x*(y*x))^*z), A_i(z) \} \}$$

$$= \min \{ \inf \{ A_i((x*(y*x))^*z) \mid i \in I \}, \inf \{ A_i(z) \} \}$$

$$\Rightarrow \bigcap_{i \in I} A_i(x) \geq \min \{ \{ \bigcap_{i \in I} A_i((x*(y*x))^*z) \}, \{ \bigcap_{i \in I} A_i(z) \} \}$$

Therefore, $\bigcap_{i \in I} A_i(x)$ is a Q-S.F.I. of X.

Remark 3.12. The union of a Q-S.F.I. of X may not be a Q-S.F.I. of X as in The following example.

Example 3.13. Consider $X = \{0, 1, 2, 3, 4, 5\}$ with binary operation ”*” defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Where \(Q = \{0, 2\} \) is a BCK-algebra. The fuzzy subset \(A, B \) defined by
\[
A(0) = A(1) = 0.9, \quad A(2) = A(3) = A(4) = A(5) = 0.4 \quad \text{and} \quad \\
B(0) = B(5) = 0.9, \quad B(1) = B(2) = B(3) = B(4) = 0.4
\]
are two \(Q\)-S.F.I.I, but
\[
A \cup B(0) = A \cup B(1) = A \cup B(5) = 0.9 \quad \text{and} \quad \\
A \cup B(2) = A \cup B(3) = A \cup B(4) = 0.4
\]
is not a \(Q\)-S.F.I.I of \(X \). Since
\[
(A \cup B)(2) = 0.4 < \min \{ (A \cup B)((2*(0*2))*5), (A \cup B)(5) \}
\]

Proposition 3.14.

Let \(\{A_i / i \in \Gamma \} \) be a chain of \(Q\)-S.F.I.I of \(X \). Then \(\bigcup_{i \in \Gamma} A_i (x) \) is a \(Q\)-S.F.I.I of \(X \).

Proof.

Let \(\{A_i | i \in \Gamma \} \) be a chain of Q-S.F.I.I of \(X \).

i: Let \(x \in X \). Then
\[
\bigcup_{i \in \Gamma} A_i (0) = \sup \{ A_i(0) | i \in \Gamma \} \geq \sup \{ A_i(x) | i \in \Gamma \} = \bigcup_{i \in \Gamma} A_i (x)
\]
[Since \(A_i \) is a \(Q\)-S.F.I.I of \(X \), \(i \in \Gamma \), by Definition 3.1(i)]
\[
\Rightarrow \bigcup_{i \in \Gamma} A_i (0) \geq \bigcup_{i \in \Gamma} A_i (x)
\]

ii: Let \(x, y \in Q, z \in X \). Then, we have
\[
\bigcup_{i \in \Gamma} A_i (x) = \sup \{ A_i(x) | i \in \Gamma \} \geq \sup \{ \min \{ A_i(x*(y*x)*z), A_i(z) | i \in \Gamma \} \}
\]
[Since \(A_i \) is a Q-S.F.I.I of \(X \), \(i \in \lambda \) by Definition 3.1(i)]
\[
\Rightarrow = \min \{ \sup \{ A_i(x*(y*x)*z), A_i(z) | i \in \Gamma \} \} \quad \text{[since } A_i \text{ is a chain, } i \in \Gamma \}
\]
\[
\Rightarrow = \min \{ \sup \{ A_i(x*(y*x)*z) | i \in \Gamma \}, \sup \{ A_i(z) | i \in \Gamma \} \}
\]
\[
\Rightarrow = \min \{ \bigcup_{i \in \Gamma} A_i (x*(y*x)*z) | i \in \Gamma \}, \bigcup_{i \in \Gamma} A_i (z) | i \in \Gamma \}
\]
Therefore, \(\bigcup_{i \in \Gamma} A_i(x) \) is a Q-S.F.I. of \(X \).

Theorem 3.15. Let \(A \) be a Q-S.F.I. of \(X \). Then \(A \) is a Q-S.F.I.I of \(X \) if and only if \(A \) satisfies the following inequality: \(\forall x, y \in Q \ A(x) \geq A(x*(y*x)) \) (b2).

Proof. Let \(A \) be a Q-S.F.I.I of \(X \) and \(x, y \in Q \) then

\[A(x) \geq \min \{ A((x*(y*x)) *0), A(0) \} \]

it follows that \(\geq \min \{ A(x*(y*x)) , A(0) \} \) [since \(x*(y*x)*0 = x*(y*x) \)]. Therefore the condition (b1) is satisfied.

Conversely,

Let \(A \) be a Q-S.F.I of \(X \). Then (F1) satisfied.

Now, let \(x, z \in Q \), then \(A(x*(y*z)) \geq \min \{ A((x*(y*z)) *z) , A(z) \} \) [Since \(A \) is a Q-S.F.I of \(X \). By (2.21)(F2)] we have \(A(x) \geq \min \{ A((x*(y*z)) *z) , A(z) \} \). Hence, \(A \) is a Q-S.F.I.I of \(X \).

Definition 3.16. A fuzzy subset \(A \) of \(X \) is called a Q-Smarandache fuzzy P-ideal of \(X \), denoted by a Q-S.F.P.I of \(X \) if satisfies (F1) and:

\((F_4) \ A(x) \geq \min \{ A((x*z)*(y*z)) , A(y) \} \), for all \(x, z \in Q, y \in X \).

Example 3.17. Consider \(X = \{0, 1, 2, 3\} \) with binary operation "*" defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

where \(Q = \{0, 1\} \) is a BCK-algebra. The fuzzy subset \(A \) defined by

\[A(0) = A(1) = A(2) = 0.8 \text{ and } A(3) = 0.2 \]

is a Q-S.F.P.I of \(X \).

Theorem 3.18. Every Q-S.F.P.I is a Q-S.F.I of \(X \).

Proof. Let \(A \) be a Q-S.F.P.I of \(X \). Then(F1) satisfied.

Now, let \(x, z \in Q \) and \(y \in X, z = 0 \) in (F4) we get:

\[A(x) \geq \min \{ A((x*0) * (y*0)),A(y) \} \]

[Since \(X \) is a Q-Smarandache BH-algebra \(x * 0 = x \).] \(A(x) \geq \min \{ A(x*y), A(y) \} \)

Therefore, \(A \) is Q-S.F.I of \(X \).

Theorem 3.19. Every Q-S.F.P.I is a Q-S.F.I.I of \(X \).

Proof. Let \(A \) be a Q-S.F.P.I of \(X \). Then(F1) satisfied [By definition 3.16(F1)]. And Let \(a, c, x, y \in Q \) and \(d \in X \). Then
\[A(a) \geq \min\{A((a * c) * (d * c)), A(d)\} \]

By (F4). Put \(a = x, d = 0, c = y * x \), we get
\[A(x) \geq \min\{A((x * (y * x)) * (0 * (y * x))), A(0)\} \]
\[= \min\{A(x * (y * x)) * 0), A(0)\} \]

Since Q is BCK \(0 * x = 0 \]
\[= \min\{A(x * (y * x)), A(0)\} \]

Since Q is BCK \(x * 0 = x \]
\[= A(x * (y * x)) \]

Since \(A(0) \geq A(x), \forall x \in X \]
Therefore, A is a \(Q\)-S.F.I.I of X [by Theorem 3.15]

Remark 3.20. In the following example, we see that the converse of Theorem (3.21) may not be true in general.

Example 3.21. Consider \(X = \{0, 1, 2\} \) with binary operation "\(*\)" defined by table
where Q = \{0, 2\} is a BCK-algebra. The fuzzy subset A defined by
\[A(0) = 0.7, A(1) = 0.5 \text{ and } A(2) = 0.2 \]
Then A is \(Q\)-S.F.I.I of X, but A is not a \(Q\)-S.F.P.I of X, since if \(x = 2, y = 1, z = 2 \), then
\[A(2) = 0.2 \leq \min\{A((2 * 2) * (1 * 2)), A(1)\} = 0.5 \]

Theorem 3.22. Let A be a \(Q\)-S.F.I, such that Q is a bounded BCK- algebra. Then A is a \(Q\)-S.F.I.I of X.

Proof. It’s clear that \(A(0) \geq A(X), \forall x \in X \)

Now, let \(x, y \in Q \) and \(z \in X \), Then
\[A(x * (y * x)) \geq \min\{A((x * (y * x)) * z), A(z)\}, \]

Since A is a \(Q\)-S.F.I of X, by 2.21(F2)]
implies that \(A(x) \geq \min\{A((x * (y * x)) * z), A(z)\} \)

Since Q is bounded BCK- algebra, by 2.6] Therefore, A is a \(Q\)-S.F.I.I of X

Definition 3.23. A fuzzy subset A of X is called a \(Q\)-Smarandache fuzzy sub-implicative ideal of X, denoted by (a \(Q\)-S.F.S.I.I) of X if it satisfies: (F1) and (F5) \[A(y * (y * x)) \geq \min\{A(((x * (x * y)) * (y * x)) * z), A(z)\} \]

for all \(x, y \in Q, z \in X \)

Example 3.24.
Consider \(X = \{0, 1, 2, 3\} \) with binary operation "\(*\)" defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Where Q={0,2} is a BCK-algebra. The fuzzy subset A is defined by
\[A(0) = A(1) = 0.9 \text{ and } A(2) = A(3) = 0.3 \]
it easy to check that A is \(Q\)-S.F.S.I.I of X
Proposition 3.25. Every Q-S.F.S.I.I is Q-S.F.I. of X.

Proof. Let A be a Q-S.F.S.I.I. Then (F1) it is satisfied. Now let \(x \in Q \) and \(y \in X \).

\[
A(x) = A(x \ast 0) = A(x \ast (x \ast x)) \geq \min\{A(((x \ast (x \ast y)) \ast (x \ast x)) \ast y),A(y)\}
\]

[Since A is a Q-S.F.S.I.I of X, by Definition 3.23 (F5)]

\[
= \min\{A(((x \ast 0) \ast y),A(y)) \} \ [\text{Since } x \ast x = 0]
\]

\[
= \min\{A(x \ast y),A(y)) \} \ [\text{Since } x \ast 0 = x]
\]

Thus \(A(x) \geq \min\{A(x \ast y),A(y)\} \)

Therefore, A is a Q-S.F.I of X.

Proposition 3.26. Let A be a Q-S.F.I of X. Then A is a Q-S.F.S.I.I of X if and only if A satisfies the following inequality: \(\forall x, y \in Q \, A((y \ast (y \ast x)) \geq A(((x \ast (x \ast y)) \ast (y \ast x)) \ast (y \ast x)) \).

(b3).

Proof. Let A be a Q-S.F.S.I.I. and \(x, y \in Q \), then

\[
A(y \ast (y \ast x)) \geq \min\{A(((x \ast (x \ast y)) \ast (y \ast x)) \ast 0),A(0)\} = \min\{A((x \ast (x \ast y)) \ast (y \ast x)),A(0)\} \ [\text{Since } Q \text{ is BCK; } x \ast 0 = x]
\]

By (b3) we have \(A((y \ast (y \ast x)) \geq A(((x \ast (x \ast y)) \ast (y \ast x))) \)

implies that \(A(y \ast (y \ast x)) \geq \min\{A(((x \ast (x \ast y)) \ast (y \ast x)) \ast z),A(z)\} \)

Therefore, A is Q-S.F.S.I.I of X.

Theorem 3.27. Let X be a Q-Smarandache implicative BH-algebra. Then every Q-S.F.I of X is a Q-S.F.S.I.I of X.

Proof. Let A be a Q-S.F.I of X. Then (F1) satisfied[By (2.21)] and let \(x, y \in Q \). Then

\[
A((x \ast (x \ast y)) \ast (y \ast x)) \geq \min\{A(((x \ast (x \ast y)) \ast (y \ast x)) \ast z),A(z)\} \ [\text{Since A is a Q-S.F.I of X by Definition 2.21}]
\]

By (b3) we have \(A((y \ast (y \ast x)) \geq A(((x \ast (x \ast y)) \ast (y \ast x))) \)

implies that \(A(y \ast (y \ast x)) \geq \min\{A(((x \ast (x \ast y)) \ast (y \ast x)) \ast z),A(z)\} \)

Therefore, A is Q-S.F.S.I.I of X.

Corollary 3.27.2. Let X be a Q-Smarandache implicative BH-algebra and A be Q-S.F.I.I of X. Then A is a Q-S.F.S.I.I of X.

Proof. Directly from proposition 3.3 and Theorem 3.27

Proposition 3.28. Let X be a Q-Smarandache medial BH-algebra and A be Q-S.F.I.
of X. Then A is a Q-S.F.S.I of X.

Proof. Let A be a Q-S.F.I of X. Then (F1) satisfied [By 2.21] and let $x, y \in Q$, and $z \in X$.

Then $A((x * (x * y)) * (y * x)) \geq \min\{A(((x * (x * y)) * (y * x)) * z)), A(z)\}$. We get

$A((y * (y * x)) \geq \min\{A(((x * (x * y)) * (y * x)) * z)), A(z)\} [Since X is a Q-Smarandache medial BH-algebra]. Hence A is a Q-S.F.S.I of X.

Corollary 3.28.3. Let X be an Q-Smarandache medial BH-algebra and A be a Q-S.F.S.I of X. Then A is a Q.S.F.S.I of X.

Proof. Directly from proposition 3.3 and proposition 3.28.

Theorem 3.29. Let X be a Q-Smarandache medial BH-algebra and A be Q.S.F.S.I satisfies the condition $\forall x, y \in Q, A((x * (x * y)) * (y * x)) \geq A(x * (y * x)) (b_4)$. Then A is Q.S.F.S.I.

Proof. Let A be a Q-S.F.S.I of X. Then (F1) is satisfied

Now let $x, y \in Q$ and $z \in X$. Then By (b4) we have $A((x * (x * y)) * (y * x)) \geq A(x * (y * x))$. Thus, $A((y * (y * x)) \geq \min\{A(((x * (x * y)) * (y * x)) * z)), A(z)\} [Since A is a Q-S.F.S.I of X] if $z = 0$, then $A(y * (y * x)) \geq \min\{A(((x * (x * y)) * (y * x)) * 0)), A(0)\}$ we obtain $A(y * (y * x)) \geq \min\{A(((x * (x * y)) * (y * x)), A(0)) [Since Q is a BCK-algebra, x * 0 = x]. It follows that $A(y * (y * x)) \geq A((x * (x * y)) * (y * x)) By (b_4), We have $A((x * (x * y)) * (y * x)) \geq A(x * (y * x)).Thus $A(y * (y * x)) \geq A(x * (y * x)), But $A(x) = A(x * (y * x)) [Since X is a medial, y * (y * x) = x]. So, $A(x) \geq A(y * (y * x))$ Hence, A is a Q.S.F.S.I of X [By 3.15(b_2)]

References

