Scientia Magna

Vol. 2 (2006), No. 1, 13-19

Smarandache Quasigroups

Arun S. Muktibodh
Mohota Science College
Nagpur

Abstract

In this paper, we have introduced Smarandache quasigroups which are Smarandache non-associative structures. W.B.Kandasamy [2] has studied Smarandache groupoids and Smarandache semigroups etc. Substructure of Smarandache quasigroups are also studied.

Keywords Quasigroup; Smarandache Quasigroup.

1. Introduction

W.B.Kandasamy has already defined and studied Smarandache groupoids, Smarandache semigroups etc. A quasigroup is a groupoid whose composition table is LATIN SQUARE. We define Smarandache quasigroup as a quasigroup which contains a group properly.

2. Preliminaries

Definition 2.1. A groupoid S such that for all $a, b \in S$ there exist unique $x, y \in S$ such that $a x=b$ and $y a=b$ is called a quasigroup.

Thus a quasigroup does not have an identity element and it is also non-associative.
Example 2.1. Here is a quasigroup that is not a loop.

$*$	1	2	3	4	5
1	3	1	4	2	5
2	5	2	3	1	4
3	1	4	2	5	3
4	4	5	1	3	2
5	2	3	5	4	1

We note that the definition of quasigroup Q forces it to have a property that every element of Q appears exactly once in every row and column of its operation tables. Such a table is called a LATIN SQUARE. Thus, quasigroup is precisely a groupoid whose multiplication table is a LATIN SQUARE.

Definition 2.2. If a quasigroup $(Q, *)$ contains a group $(G, *)$ properly then the quasigroup is said to be Smarandache quasigroup.

A Smarandache quasigroup is also denoted by S-quasigroup.

Example 2.2. Let Q be a quasigroup defined by the following table;

$*$	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}
a_{0}	a_{0}	a_{1}	a_{3}	a_{4}	a_{2}
a_{1}	a_{1}	a_{0}	a_{2}	a_{3}	a_{4}
a_{2}	a_{3}	a_{4}	a_{1}	a_{2}	a_{0}
a_{3}	a_{4}	a_{2}	a_{0}	a_{1}	a_{3}
a_{4}	a_{2}	a_{3}	a_{4}	a_{0}	a_{1}

Clearly, $A=\left\{a_{0}, a_{1}\right\}$ is a group w.r.t. $*$ which is a proper subset of Q. Therefore Q is a Smarandache quasigroup.

Definition 2.3. A quasigroup Q is idempotent if every element x in Q satisfies $x * x=x$.
Theorem 2.1. If a quasigroup contains a Smarandache quasigroup then the quasigroup is a Smarandache quasigroup.

Proof. Follows from definition of Smarandache quasigroup.
Example 2.3. $(Q, *)$ defined by the following table is a quasigroup.

$*$	1	2	3	4
1	1	3	4	2
2	4	2	1	3
3	2	4	3	1
4	3	1	2	4

$(Q, *)$ is an idempotent quasigroup.
Definition 2.4. An element x in a quasigroup Q is called idempotent if $x \cdot x=x$.
Consider a quasigroup;

$*$	1	2	3	4	5
1	3	1	4	2	5
2	5	2	3	1	4
3	1	4	2	5	3
4	4	5	1	3	2
5	2	3	5	4	1

Here 2 is an idempotent element.
Example 2.4. The smallest quasigroup which is neither a group nor a loop is a quasigroup of order 3 as given by the following table;

$*$	q_{1}	q_{2}	q_{3}
q_{1}	q_{1}	q_{2}	q_{3}
q_{2}	q_{3}	q_{1}	q_{2}
q_{3}	q_{2}	q_{3}	q_{1}

3. A new class of Quasigroups

V.B.Kandasamy [2] has defined a new class of groupoids as follows;

Definition 3.1. Let $Z_{n}=\{0,1,2, \cdots, n-1\}, n \geq 3$. For $a, b \in Z_{n}$ define a binary operation $*$ on Z_{n} as: $a * b=t a+u b(\bmod n)$ where t, u are two distinct element in $Z_{n} \backslash\{0\}$ and $(t, u)=1$. Here + is the usual addition of two integers and $t a$ means the product of two integers t and a. We denote this groupoid by $Z_{n}(t, u)$.

Theorem 3.1. Let $Z_{n}(t, u)$ be a groupoid. If $n=t+u$ where both t and u are primes then $Z_{n}(t, u)$ is a quasigroup.

Proof. When t and u are primes every row and column in the composition table will have distinct n element. As a result $Z_{n}(t, u)$ is a quasigroup.

Corollary 3.1. If $Z_{p}(t, u)$ is a groupoid and $t+u=p,(t, u)=1$ then $Z_{p}(t, u)$ is a quasigroup.
Proof. Follows from the theorem.
Example 3.1. Consider $Z_{5}=\{0,1,2,3,4\}$. Let $t=2$ and $u=3$. Then $5=2+3,(2,3)=1$ and the composition table is:

$*$	0	1	2	3	4
0	0	3	1	4	2
1	2	0	3	1	4
2	4	2	0	3	1
3	1	4	2	0	3
4	3	1	4	2	0

Thus $Z_{5}(2,3)$ is a quasigroup.
Definition 3.2. Let $Z_{n}=\{0,1,2, \cdots, n-1\}, n \geq 3, n<\infty$. Define $*$ on Z_{n} as $a * b=t a+u b$ $(\bmod n)$ where t and $u \in Z_{n} \backslash\{0\}$ and $t=u$. For a fixed integer n and varying t and u we get a class of quasigroups of order n.

Example 3.2. Consider $Z_{5}=\{0,1,2,3,4\}$. Then $Z_{5}(3,3)$ is a quasigroup as given by the following table:

$*$	0	1	2	3	4
0	0	3	1	4	2
1	3	1	4	2	0
2	1	4	2	0	3
3	4	2	0	3	1
4	2	0	3	1	4

Definition 3.3. Let $Z_{n}=\{0,1,2, \cdots, n-1\}, n \geq 3, n<\infty$. Define $*$ on Z_{n} as $a * b=t a+u b$ $(\bmod n)$ where t and $u \in Z_{n} \backslash\{0\}$ and $t=1$ and $u=n-1$. For a fixed integer n and varying t and u we get a class of quasigroups of order n.

Example 3.3. Consider $Z_{8}=\{0,1,2,3,4,5,6,7\}$. Then $Z_{8}(1,7)$ is a quasigroup as given by the following table:

$*$	0	1	2	3	4	5	6	7
0	0	7	6	5	4	3	2	1
1	1	0	7	6	5	4	3	2
2	2	1	0	7	6	5	4	3
3	3	2	1	0	7	6	5	4
4	4	3	2	1	0	7	6	5
5	5	4	3	2	1	0	7	6
6	6	5	4	3	2	1	0	7
7	7	6	5	4	3	2	1	0

Definition 3.4. Let $Z_{n}=\{0,1,2, \cdots, n-1\}, n \geq 3, n<\infty$. Define $*$ on Z_{n} as $a * b=t a+u b$ $(\bmod n)$ where t and $u \in Z_{n} \backslash\{0\}$ and $(t, u)=1, t+u=n$ and $|t-u|$ is a minimum. For a fixed integer n and varying t and u we get a class of quasigroups of order n.

Example 3.4. Consider $Z_{8}=\{0,1,2,3,4,5,6,7\}$. Then $Z_{8}(3,5)$ is a quasigroup as given by the following table:

$*$	0	1	2	3	4	5	6	7
0	0	5	2	7	4	1	6	3
1	3	0	5	2	7	4	1	6
2	6	3	0	5	2	7	4	1
3	1	6	3	0	5	2	7	4
4	4	1	6	3	0	5	2	7
5	7	4	1	6	3	0	5	2
6	2	7	4	1	6	3	0	5
7	5	2	7	4	1	6	3	0

Definition 3.5. Let $(Q, *)$ be a quasigroup. A proper subset V of Q is called a subquaisgroup of Q if V itself is a quasigroup under $*$.

Definition 3.6. Let Q be a quasigroup. A subquaisgroup V of Q is said to be normal subquaisgroup of Q if:

1. $a V=V a$
2. $(V x) y=V(x y)$
3. $y(x V)=(y x) V$
for all $a, x, y \in Q$.

Example 3.5. Let Q be a quasigroup defined by the following table:

$*$	1	2	3	4	5	6	7	8
1	1	4	3	2	6	5	8	7
2	2	1	4	3	5	6	7	8
3	3	2	1	4	7	8	6	5
4	4	3	2	1	8	7	5	6
5	6	5	7	8	1	2	3	4
6	5	6	8	7	2	3	4	1
7	8	7	6	5	3	4	1	2
8	7	8	5	6	4	1	2	3

Here $V=\{1,2,3,4\}$ is a normal subquasigroup of Q.
Definition 3.7. A subquasigroup is said to be simple if it has no proper nontrivial normal subgroup.

4. Substructures of Smarandache Quasigroups

Definition 4.1. Let $(Q, *)$ be a Smarandache quasigroup. A nonempty subset H of Q is said to be a Smarandache subquasigroup if H contains a proper subset K such that k is a group under $*$.

Example 4.1. Let $Q=\{1,2,3,4,5,6,7,8\}$ be the quasigroup defined by the following table:

$*$	1	2	3	4	5	6	7	8
1	1	2	3	4	6	5	8	7
2	2	1	4	3	5	6	7	8
3	3	4	1	2	7	8	6	5
4	4	3	2	1	8	7	5	6
5	6	5	7	8	1	2	3	4
6	5	6	8	7	2	3	4	1
7	8	7	6	5	3	4	1	2
8	7	8	5	6	4	1	2	3

Consider $S=\{1,2,3,4\}$ then S is a subquasigroup which contains a group $G=\{1,2\}$. Therefore S is a Smarandache subquasigroup.

Example 4.2. There do exist Smarandache quasigroup which do not posses any Smarandache subquasigroup. Consider the quasigroup Q defined by the following table:

$*$	1	2	3	4	5
1	3	1	4	2	5
2	5	2	3	1	4
3	1	4	2	5	3
4	4	5	1	3	2
5	2	3	5	4	1

Clearly, Q is Smarandache quasigroup as it contains a group $G=\{2\}$. But there is no subquasigroup, not to talk of Smarandache subquasigroup.

Definition 4.2. Let Q be a S-quasigroup. If $A \subset Q$ is a proper subset of Q and A is a subgroup which can not be contained in any proper subquasigroup of Q we say A is the largest subgroup of Q.

Example 4.3. Let $Q=\{1,2,3,4,5,6,7,8\}$ be the quasigroup defined by the following table:

$*$	1	2	3	4	5	6	7	8
1	1	2	3	4	6	5	8	7
2	2	1	4	3	5	6	7	8
3	3	4	1	2	7	8	6	5
4	4	3	2	1	8	7	5	6
5	6	5	7	8	1	2	3	4
6	5	6	8	7	2	3	4	1
7	8	7	6	5	3	4	1	2
8	7	8	5	6	4	1	2	3

Clearly, $A=\{1,2,3,4\}$ is the largest subgroup of Q.
Definition 4.3. Let Q be a S-quasigroup. If A is a proper subset of Q which is subquasigroup of Q and A contains the largest group of Q then we say A to be the Smarandache hyper subquasigroup of Q.

Example 4.4. Let Q be a quasigroup defined by the following table:

$*$	1	2	3	4	5	6	7	8
1	1	2	4	3	6	5	8	7
2	2	1	3	4	5	6	7	8
3	3	4	1	2	7	8	6	5
4	4	3	2	1	8	7	5	6
5	6	5	7	8	1	2	3	4
6	5	6	8	7	2	3	4	1
7	8	7	6	5	3	4	1	2
8	7	8	5	6	4	1	2	3

Here $A=\{1,2,3,4\}$ is the subquasigroup of Q which contains the largest group $\{1,2\}$ of $Q . A$ is a Smarandache hyper subquasigroup of Q.

Definition 4.4. Let Q be a finite S-quasigroup. If the order of every subgroup of Q divides the order of the S-quasigroup Q then we say Q is a Smarandache Lagrange quasigroup.

Example 4.5. In the above example $4.4, Q$ is a S-quasigroup whose only subgroup are $\{1\}$ and $\{1,2\}$. Clearly, order of these subgroups divide the order of the quasigroup Q. Thus Q is the Smarandache Lagrange quasigroup.

Definition 4.5. Let Q be a finite S-quasigroup. p is the prime such that p divides the order of Q. If there exist a subgroup A of Q of order p or $p^{l},(l>1)$ we say Q has a Smarandache p-Sylow subgroup.

Example 4.6. Let $Q=\{1,2,3,4,5,6,7,8\}$ be the quasigroup defined by the following table:

$*$	1	2	3	4	5	6	7	8
1	1	2	3	4	6	5	8	7
2	2	1	4	3	5	6	7	8
3	3	4	1	2	7	8	6	5
4	4	3	2	1	8	7	5	6
5	6	5	7	8	1	2	3	4
6	5	6	8	7	2	3	4	1
7	8	7	6	5	3	4	1	2
8	7	8	5	6	4	1	2	3

Consider $A=\{1,2,3,4\}$ then A is a subgroup of Q whose order 2^{2} divides order of Q. Therefore Q has a Smarandache 2-Sylow subgroup.

Definition 4.6. Let Q be a finite S-quasigroup. An element $a \in A, a \subset Q$ (A a proper subset of Q and A is the subgroup under the operation of Q) is said to be a Smarandache Cauchy element of Q if $a^{r}=1,(r>1)$ and 1 is the unit element of A and r divides the order of Q otherwise a is not a Smarandache Cauchy element of Q.

Definition 4.7. Let Q be a finite S-quasigroup if every element in every subgroup of Q is a Smarandache Cauchy element of Q then we say that Q is a Smarandache Cauchy quasigroup.

Example 4.6. In the above example 4.6 there are three subgroup of Q. They are $\{1\},\{1,2\}$ and $\{1,2,3,4\}$. Each element in each subgroup is a Smarandache Cauchy element as $1^{2}=2^{2}=3^{2}=4^{2}=1$ in each respective subgroup. Thus Q is a Smarandache Cauchy group.

References

[1] R. H. Bruck, A survey of binary system, Springer-Verlag, New York, 1958.
[2] W. B. Kandasamy, Smarandache Semigroup, American Research Press, 2002.
[3] Robinson Derek J. S., A course in the theory of Groups, Springer-verlag, New York, 1996.

