Smarandache's ratio theorem

Edited by M. Khoshnevisan

Neuro Intelligence Center, Australia E-mail: mkhoshnevisan@neurointelligence-center.org

Abstract In this paper we present the Smarandache's ratio theorem in the geometry of the triangle.

Keywords Smarandache's ratio theorem, triangle.

§1. The main result

Smarandache's Ratio Theorem

If the points A_1, B_1, C_1 divide the sides $\parallel BC \parallel = a, \parallel CA \parallel = b$, respectively $\parallel AB \parallel = c$ of a triangle $\triangle ABC$ in the same ratio k > 0, then

$$||AA_1||^2 + ||BB_1||^2 + ||CC_1||^2 \ge \frac{3}{4}(a^2 + b^2 + c^2).$$

Proof. Suppose k > 0 because we work with distances.

$$||BA_1|| = k ||BC||, ||CB_1|| = k ||CA||, ||AC_1|| = k ||AB||.$$

We'll apply tree times Stewart's theorem in the triangle $\triangle ABC$, with the segments AA_1, BB_1 , respectively CC_1 :

$$||AB||^2 \cdot ||BC|| (1-k) + ||AC||^2 \cdot ||BC|| k - ||AA_1||^2 \cdot ||BC|| = ||BC||^3 (1-k)k$$

where

$$||AA_1||^2 = (1-k) ||AB||^2 + k ||AC||^2 - (1-k)k ||BC||^2$$
.

Similarly,

$$||BB_1||^2 = (1-k) ||BC||^2 + k ||BA||^2 - (1-k)k ||AC||^2.$$

$$||CC_1||^2 = (1-k) ||CA||^2 + k ||CB||^2 - (1-k)k ||AB||^2.$$

By adding these three equalities we obtain:

$$||AA_1||^2 + ||BB_1||^2 + ||CC_1||^2 = (k^2 - k + 1)(||AB||^2 + ||BC||^2 + ||CA||^2),$$

which takes the minimum value when $k=\frac{1}{2}$, which is the case when the three lines from the enouncement are the medians of the triangle. The minimum is $\frac{3}{4}(\parallel AB \parallel^2 + \parallel BC \parallel^2 + \parallel CA \parallel^2)$.

The minimum is
$$\frac{3}{4}(\|AB\|^2 + \|BC\|^2 + \|CA\|^2)$$
.

§2. Open problems on Smarandache's ratio theorem

1. If the points A'_1, A'_2, \ldots, A'_n divide the sides $A_1A_2, A_2A_3, \ldots, A_nA_1$ of a polygon in a ratio k > 0, determine the minimum of the expression:

$$||A_1A_1'||^2 + ||A_2A_2'||^2 + \cdots + ||A_nA_n'||^2$$
.

- 2. Similarly question if the points A'_1, A'_2, \ldots, A'_n divide the sides $A_1 A_2, A_2 A_3, \ldots, A_n A_1$ in the positive ratios k_1, k_2, \ldots, k_n respectively.
 - 3. Generalize this problem for polyhedrons.

References

- [1] F. Smarandache, Problèmes avec et san. . . problèmes!, Problem 5. 38, p. 56, Somipress, Fés, Morocco, 1983.
- [2] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org, Cornell University, NY, USA.
- [3] M. Khoshnevisan, Smarandache's Ratio Theorem, NeuroIntelligence Center, Australia, http://www.scribd.com/doc/28317750/Smaradache-s-Ratio-Theorem.