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Abstract For any positive integer n, the Smarandache reciprocal function Sc(n) is defined

as Sc(n) = max{m : y | n! for all 1 ≤ y ≤ m, and m + 1 † n!}. That is, Sc(n) is the

largest positive integer m such that y | n! for all integers 1 ≤ y ≤ m. The main purpose

of this paper is using the elementary method and the Vinogradov’s important work to prove

the following conclusion: For any positive integer k ≥ 3, there exist infinite group positive

integers (m1, m2, · · · , mk) such that the equation

Sc(m1 + m2 + · · ·+ mk) = Sc(m1) + Sc(m2) + · · ·+ Sc(mk).

This solved a problem posed by Zhang Wenpeng during the Fourth International Conference

on Number Theory and the Smarandache Problems.
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§1. Introduction and result

For any positive integer n, the Smarandache reciprocal function Sc(n) is defined as the
largest positive integer m such that y | n! for all integers 1 ≤ y ≤ m. That is, Sc(n) = max{m :
y | n! for all 1 ≤ y ≤ m, and m + 1 † n!}. For example, the first few values of Sc(n) are:

Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(6) = 6, Sc(7) = 10,

Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(12) = 12, Sc(13) = 16,

Sc(14) = 16, Sc(15) = 16, Sc(16) = 16, Sc(17) = 18, Sc(18) = 18, · · · · · · .

This function was first introduced by A.Murthy in reference [2], where he studied the elementary
properties of Sc(n), and proved the following conclusion:

If Sc(n) = x and n 6= 3, then x + 1 is the smallest prime greater than n.
During the Fourth International Conference on Number Theory and the Smarandache

Problems, Professor Zhang Wenpeng asked us to study such a problem: For any positive integer
k, whether there exist infinite group positive integers (m1,m2, · · · ,mk) such that the equation

Sc(m1 + m2 + · · ·+ mk) = Sc(m1) + Sc(m2) + · · ·+ Sc(mk).
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I think that this problem is interesting, because it has some close relations with the Gold-
bach problem. The main purpose of this paper is using the elementary method and the Vino-
gradov’s important work to study this problem, and solved it completely. That is, we shall
prove the following conclusion:

Theorem. For any positive integer k ≥ 3, there exist infinite group positive integers
(m1,m2, · · · ,mk) such that the equation

Sc(m1 + m2 + · · ·+ mk) = Sc(m1) + Sc(m2) + · · ·+ Sc(mk).

It is clear that if k = 1, then our Theorem is trivial. Whether there exist infinite group
positive integers (m1,m2) such that Sc(m1+m2) = Sc(m1)+Sc(m2)? This is an open problem.

If the Goldbach’s conjecture is true (i.e., every even number 2N ≥ 6 can be written as
2N = p1 + p2, a sum of two odd primes), then there exist infinite group positive integers
(m1, m2) such that the equation Sc(m1 + m2) = Sc(m1) + Sc(m2).

§2. Proof of the theorem

In this section, we shall prove our Theorem directly. First from the Vinogradov’s important
work Three Primes Theorem (See Theorem 6.14 of reference [5]) we know that for any odd
number 2N + 1 large enough, there must exist three odd primes p1, p2 and p3 such that the
equation:

2N + 1 = p1 + p2 + p3. (1)

For any positive integer k ≥ 3 and prime p (large enough), by using the mathematical inductive
method and the Vinogradov’s work (1) we can deduce that p + k − 1 can be written as a sum
of k odd primes:

p + k − 1 = p1 + p2 + · · ·+ pk. (2)

In fact if k = 3, then for any prime p large enough, p + 2 is an odd number, so from (1) we
know that p + 2 = p1 + p2 + p3. So (2) is true. If k = 4, then we take p1 = 3, so from (1) we
also have

p + 3 = 3 + p2 + p3 + p4 = p1 + p2 + p3 + p4.

So (2) is true if k = 4. If k ≥ 5, we take p be such a prime so as to odd number p+k−1−3·(k−3)
large enough, from (1) we know that there must exist three odd primes pk−2, pk−1 and pk such
that the equation:

p + k − 1− 3 · (k − 3) = pk−2 + pk−1 + pk

or

p + k − 1 = 3 + 3 + · · ·+ 3︸ ︷︷ ︸
k−3

+pk−2 + pk−1 + pk = p1 + p2 + · · ·+ pk,
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where p1 = p2 = · · · = pk−3 = 3. So (2) is true for all k ≥ 3.
Now we use (2) to complete the proof of our Theorem. For any positive integer k ≥ 3, we

take prime p large enough, then from (2) we have the identity

p− 1 = p1 − 1 + p2 − 1 + p3 − 1 + · · · · · ·+ pk − 1. (3)

Note that Sc (pi − 1) = pi − 1 for all prime pi, taking m = p− 1, mi = pi − 1, i = 1, 2, · · · , k,
from (3) we may immediately deduce the identity

p− 1 = Sc(p− 1) = Sc(m) = Sc(m1 + m2 + · · ·+ mk)

= p1 − 1 + p2 − 1 + p3 − 1 + · · · · · ·+ pk − 1

= Sc(m1) + Sc(m2) + Sc(m3) + · · ·+ Sc(mk).

That is,
Sc(m1 + m2 + · · ·+ mk) = Sc(m1) + Sc(m2) + · · ·+ Sc(mk).

Since there are infinite prime p, so there exist infinite group positive integers (m1, m2, · · · , mk)
such that the equation

Sc(m1 + m2 + · · ·+ mk) = Sc(m1) + Sc(m2) + · · ·+ Sc(mk).

This completes the proof of Theorem.
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