THE REDUCED SMARANDACHE SQUARE-DIGITAL SUBSEQUENCE IS INFINITE

Maohua Le

Abstract . In this paper we prove that the reduced Smarandache square-digital subsequence is infinite.

Key words. reduced Smarandache square-digital subsequence, infinite.

Form all square integers $0,1,4,9,16,25,36, \ldots$, we choose only the terms whose digits are all perfect squares and disregarding the square numbers of the form $N \cdot 10^{2 t}$, where N is also a square number and t is a positive integer. Such sequence is called the reduced Smarandache square-digital subsequence . Bencze [1] and Smith [2] independently proposed the following question.

Question . How many terms in the reduced Smarandache square-digital subsequence?

In this paper we completely solve the mentioned question. We prove the following result.

Theorem . The reduced Smarandache square-digital subsequence has infinitely many terms.

By our theorem, we can give the following corollary immediately .

Corollary . The reduced Smarandache square-partial-digital subsequence has infinitely many terms.

Proof of Theorem. For any positive integer n, let

$$
\begin{equation*}
A(n)=2 \cdot 10^{n}+1 . \tag{1}
\end{equation*}
$$

Then we have
(2) $(A(n)) 2=4 \cdot 102^{n}+4 \cdot 10^{n}+1=40 \underbrace{\cdots} 0 \quad 4 \underbrace{\cdots} 0 \quad 1$.

By (1) and (2), we see that $(A(n))^{2} \quad \begin{aligned} & (n-1) z e r o s \\ & \text { belongs }\end{aligned}$ to the reduced Smarandache square-digital sudsequence for any n hus, the sequence has infinitely many terms The theorem is proved.

References

[1] M. Bencze, Smarandache relationships and subsequences, Smarandache Notions J. 11(2000), 79-85.
[2] S. Smith, A set of conjecture on Smarandache sequences, Bull. pure Appl. Sci. $16 \mathrm{E}(1997)$, 2:237-240

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P R CHINA

